Skip to main content
Log in

The outer spectral radius and dynamics of completely positive maps

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We examine a special case of an approximation of the joint spectral radius given by Blondel and Nesterov, which we call the outer spectral radius. The outer spectral radius is given by the square root of the ordinary spectral radius of the n2 by n2 matrix \(\sum \overline {{X_i}} \otimes {X_i}\). We give an analogue of the spectral radius formula for the outer spectral radius which can be used to quickly obtain the error bounds in methods based on the work of Blondel and Nesterov. The outer spectral radius is used to analyze the iterates of a completely positive map, including the special case of quantum channels. The average of the iterates of a completely positive map approach to a completely positive map where the Kraus operators span an ideal in the algebra generated by the Kraus operators of the original completely positive map. We also give an elementary treatment of Popescu’s theorems on similarity to row contractions in the matrix case, describe connections to the Parrilo-Jadbabaie relaxation, and give a detailed analysis of the maximal spectrum of a completely positive map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Ahmadi, R. Jungers, P A. Parrilo and M. Roozbehani, Joint spectral radius and path-complete graph Lyapunov functions, SIAM Journal on Control and Optimization 52 (2014), 687–717.

    Article  MathSciNet  Google Scholar 

  2. V. D. Blondel, The birth of the joint spectral radius: An interview with Gilbert Strang, Linear Algebra and its Applications 428 (2008), 2261–2264.

    Article  MathSciNet  Google Scholar 

  3. V. D. Blondel and Y. Nesterov, Computationally efficient approximations of the joint spectral radius, SIAM Journal on Matrix Analysis and Applications 27 (2005), 256–272.

    Article  MathSciNet  Google Scholar 

  4. V. D. Blondel and J. N. Tsitsiklis, The Lyapunov exponent and joint spectral radius of pairs of matrices are hard-when not impossible-to compute and to approximate, Mathematics of Control, Signals and Systems 10 (1997), 31–40.

    Article  MathSciNet  Google Scholar 

  5. V. D. Blondel and J. N. Tsitsiklis, The boundedness of all products of a pair of matrices is undecidable, Systems and Control Letters 41 (2000), 135–140.

    Article  MathSciNet  Google Scholar 

  6. M.-D. Choi, Positive linear maps on C*-algebras, Ph. D. thesis, University of Toronto, 1972.

  7. I. Daubechies and J. Lagarias, Two-scale difference equations. I. Existence and global regularity of solutions, SIAM Journal on Mathematical Analysis 22 (1991), 1388–1410.

    Article  MathSciNet  Google Scholar 

  8. D. E. Evans and R. Høegh-Krohn, Spectral properties of positive maps on C*-algebras, Journal of the London Mathematical Society 17 (1978), 345–355.

    Article  MathSciNet  Google Scholar 

  9. A. E. Frazho, Complements to models for noncommuting operators, Journal of Functional Analysis 59 (1984), 445–461.

    Article  MathSciNet  Google Scholar 

  10. U. Groh, Some observations on the spectra of positive operators on finite-dimensional C*-algebras, Linear Algebra and its Applications 42 (1982), 213–222.

    Article  MathSciNet  Google Scholar 

  11. J. W. Helton, I. Klep, S. McCullough and N. Slinglend, Noncommutative ball maps, Journal of Functional Analysis 257 (2009), 47–87.

    Article  MathSciNet  Google Scholar 

  12. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

    Book  Google Scholar 

  13. K. Kraus, General state changes in quantum theory, Annals of Physics 64 (1971), 311–335.

    Article  MathSciNet  Google Scholar 

  14. M. Lagro, W.-S. Yang and S. Xiong, A Perron-Frobenius type of theorem for quantum operations, Journal of Statistical Physics 169 (2017), 38–62.

    Article  MathSciNet  Google Scholar 

  15. M. Michałek and Y. Shitov, Quantum version of Wielandt’s inequality revisited, IEEE Transactions on Information Theory 65 (2019), 5239–5242.

    Article  MathSciNet  Google Scholar 

  16. A. Müller-Hermes, D. Stilck França and M. M. Wolf, Entropy production of doubly stochastic quantum channels, Journal of Mathematical Physics 57 (2016), Article no. 022203.

  17. P. A. Parrilo and A. Jadbabaie, Approximation of the joint spectral radius using sums of squares, Linear Algebra and its Applications 428 (2008), 2385–2402.

    Article  MathSciNet  Google Scholar 

  18. J. E. Pascoe, An elementary method to compute the algebra generated by some given matrices and its dimension, Linear Algebra and its Applications 571 (2019), 132–142.

    Article  MathSciNet  Google Scholar 

  19. G. Popescu, Isometric dilations for infinite sequences of noncommuting operators, Transactions of the American Mathematical Society 316 (1989), 523–536.

    Article  MathSciNet  Google Scholar 

  20. G. Popescu, Von Neumann inequality for \({(B{({\cal H})^n})_1}\), Mathematica Scandinavica 68 (1991), 292–304.

    Article  MathSciNet  Google Scholar 

  21. G. Popescu, Similarity and ergodic theory of positive linear maps, Journal für die Reine und Angewandte Mathematik 561 (2003), 87–129.

    MathSciNet  MATH  Google Scholar 

  22. G. Popescu, Joint similarity to operators in noncommutative varieties, Proceedings of the London Mathematical Society 103 (2011), 331–370.

    Article  MathSciNet  Google Scholar 

  23. G. Popescu, Similarity problems in noncommutative polydomains, Journal of Functional Analysis 267 (2014), 4446–4498.

    Article  MathSciNet  Google Scholar 

  24. M. Raginsky, Entropy production rates of bistochastic strictly contractive quantum channels on a matrix algebra, Journal of Physics A: Mathematical and General 35 (2002), L585–L590.

    Article  MathSciNet  Google Scholar 

  25. G. C. Rota and G. Strang, A note on the joint spectral radius, Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae 22 (1960), 379–381.

    MathSciNet  MATH  Google Scholar 

  26. G.-C. Rota, On models for linear operators, Communications on Pure and Applied Mathematics 13 (1960), 469–472.

    Article  MathSciNet  Google Scholar 

  27. B. Sagan, The Symmetric Group, Graduate Text in Mathematics, Vol. 203, Springer, New York, 2001.

    Book  Google Scholar 

  28. M. Sanz, D. Perez-Garcia, M. M. Wolf and J. I. Cirac, A quantum version of wielandt’s inequality, IEEE Transactions on Information Theory 56 (2010), 4668–4673.

    Article  MathSciNet  Google Scholar 

  29. R. Schrader, Perron-Frobenius theory for positive maps on trace ideals, in Mathematical Physics in Mathematics and Physics (Siena, 2000), Fields Institute Communications, vol. 30, American Mathematical Society, Providence, RI, 2001, pp. 361–378.

    Google Scholar 

  30. J. Xu and M. Xiao, A characterization of the generalized spectral radius with Kronecker powers, Automatica 47 (2011), 1530–1533.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Pascoe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascoe, J.E. The outer spectral radius and dynamics of completely positive maps. Isr. J. Math. 244, 945–969 (2021). https://doi.org/10.1007/s11856-021-2198-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2198-x

Navigation