Skip to main content
Log in

The worst way to collapse a simplex

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In general a contractible simplicial complex need not be collapsible. Moreover, there exist complexes which are collapsible but even so admit a collapsing sequence where one “gets stuck”, that is one can choose the collapses in such a way that one arrives at a nontrivial complex which admits no collapsing moves. Here we examine this phenomenon in the case of a simplex. In particular, we characterize all values of n and d so that the n-simplex may collapse to a d-complex from which no further collapses are possible. Equivalently, and in the language of high-dimensional generalizations of trees, we construct hypertrees that are anticollapsible, but not collapsible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Adiprasito, B. Benedetti and F. H. Lutz, Extremal examples of collapsible complexes and random discrete Morse theory, Discrete & Computational Geometry 57 (2017), 824–853.

    Article  MathSciNet  Google Scholar 

  2. B. Bagchi and B. Datta, Combinatorial triangulations of homology spheres, Discrete Mathermatics 305 (2005), 1–17.

    Article  MathSciNet  Google Scholar 

  3. B. Benedetti and F. H. Lutz, The dunce hat in a minimal non-extendably collapsible 3-ball, Electronic Geometry Models, Model no. 2013.10.001, http://www.eg-models.de/models/Polytopal_Complexes/2013.10.001.

  4. B. Benedetti and F. H. Lutz, Random discrete Morse theory and a new library of triangulations, Experimental Mathematics 23 (2014), 66–94.

    Article  MathSciNet  Google Scholar 

  5. A. Björner and F. H. Lutz, Simplicial manifolds, bistellar flips and a 16-vertex triangulation of the Poincaré homology 3-sphere, Experimental Mathematics 9 (2000), 275–289.

    Article  MathSciNet  Google Scholar 

  6. A. Björner and M. Tancer, Combinatorial Alexander duality—a short and elementary proof, Discrete & Computational Geometry 42 (2009), 586–593.

    Article  MathSciNet  Google Scholar 

  7. M. K. Chari, On discrete Morse functions and combinatorial decompositions, Discrete Mathematics 217 (2000), 101–113

    Article  MathSciNet  Google Scholar 

  8. M. M. Cohen, A Course in Simple-Homotopy Theory, Graduate Texts in Mathematics, Vol. 10, Springer, New York-Berlin, 2012.

    Google Scholar 

  9. A. M. Duval, C. J. Klivans and J. L. Martin, Simplicial matrix-tree theorems, Transactiona of the American Mathematical Society 361 (2009), 6073–6114.

    Article  MathSciNet  Google Scholar 

  10. R. Forman, Morse theory for cell complexes, Advances in Mathematics 134 (1998), 90–145.

    Article  MathSciNet  Google Scholar 

  11. R. Forman, A user’s guide to discrete Morse theory, Sém. Séminaire Lotharingien de Combinatoire 48 (2002), Article no. B48c.

  12. E. Gawrilow and M. Joswig, Polymake: a framework for analyzing convex polytopes, in Polytopes—Combinatorics and Computation (Oberwolfach, 1997), DMV Seminar, Vol. 29, Birkhäuser, Basel, 2000, pp. 43–73.

    Chapter  Google Scholar 

  13. A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.

    MATH  Google Scholar 

  14. M. Joswig, D. Lofano, F. H. Lutz, and M. Tsuruga, Frontiers of sphere recognition in practice, https://arxiv.org/abs/1405.3848.

  15. M. Kahle, F. H. Lutz, A. Newman and K. Parsons, Cohen-Lenstra heuristics for torsion in homology of random complexes, Experimental Mathematics 29 (2020), 347–359.

    Article  MathSciNet  Google Scholar 

  16. J. Kahn, M. Saks and D. Sturtevant, A topological approach to evasiveness, Combinatorica 4 (1984), 297–306.

    Article  MathSciNet  Google Scholar 

  17. G. Kalai, Enumeration of Q-acyclic simplicial complexes, Israel Journal of Mathematics 45 (1983), 337–351.

    Article  MathSciNet  Google Scholar 

  18. D. Kozlov, Combinatorial Algebraic Topology, Algorithms and Computation in Mathematics, Vol. 21, Springer, Berlin, 2008.

    Book  Google Scholar 

  19. N. Linial and Y. Peled, Enumeration and randomized constructions of hypertrees, Random Structures & Algorithms 55 (2019), 677–695.

    Article  MathSciNet  Google Scholar 

  20. U. Pachner, Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 57 (1987), 69–86.

    Article  MathSciNet  Google Scholar 

  21. U. Pachner, P.L. homeomorphic manifolds are equivalent by elementary shellings, European Journal of Combinatorics 12 (1991), 129–145.

    Article  MathSciNet  Google Scholar 

  22. M. Tancer, Recognition of collapsible complexes is NP-complete, Discrete & Computational Geometry 55 (2016), 21–38.

    Article  MathSciNet  Google Scholar 

  23. J. H. C. Whitehead, Simplicial Spaces, Nuclei and m-Groups, Proceedings of the London Mathematical Society 45 (1939), 243–327.

    Article  MathSciNet  Google Scholar 

  24. E. C. Zeeman, On the dunce hat, Topology 2 (1964), 341–358.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

Both authors thank Frank H. Lutz for suggesting this problem and for several helpful comments on an earlier draft of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Newman.

Additional information

The authors were supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Graduiertenkolleg “Facets of Complexity” (GRK 2434).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lofano, D., Newman, A. The worst way to collapse a simplex. Isr. J. Math. 244, 625–647 (2021). https://doi.org/10.1007/s11856-021-2184-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2184-3

Navigation