Skip to main content
Log in

Central limit theorem and cohomological equation on homogeneous spaces

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The dynamics of one-parameter diagonal group actions on finite volume homogeneous spaces has a partially hyperbolic feature. In this paper we extend the Livšic-type result to these possibly noncompact and nonaccessible systems. We also prove a central limit theorem for the Birkhoff averages of points on a horospherical orbit. The Livšic-type result allows us to show that the variance of the central limit theorem is nonzero provided that the test function has nonzero mean with respect to an invariant probability measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Avila, J. Santamaria and M. Viana, Holonomy invariance: rough regularity and applications to Lyapunov exponents, Astérisque 358 (2013), 13–74.

    MathSciNet  MATH  Google Scholar 

  2. M. B. Bekka and M. Mayer, Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, London Mathematical Society Lecture Note Series, Vol. 269, Cambridge University Press, Cambridge, 2000.

    Book  Google Scholar 

  3. M. Björklund, M. Einsiedler and A. Gorodnik, Quantitative multiple mixing, Journal of the European Mathematical Society 22 (2020), 1475–1529.

    Article  MathSciNet  Google Scholar 

  4. M. Björklund and A. Gorodnik, Central limit theorems for Diophantine approximations, Mathematische Annalen 374 (2019), 1371–1437.

    Article  MathSciNet  Google Scholar 

  5. M. Björklund and A. Gorodnik, Central limit theorems for group actions which are exponentially mixing of all orders, Journal d’Analyse Mathématique 141 (2020), 457–482.

    Article  MathSciNet  Google Scholar 

  6. A. Borel and G. Prasad, Values of isotropic quadratic forms at S-integral points, Compositio Mathematica 83 (1992), 347–372.

    MathSciNet  MATH  Google Scholar 

  7. M. Einsiedler, G. A. Margulis and A. Venkatesh, Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces, Inventiones Mathematicae 177 (2009), 137–212.

    Article  MathSciNet  Google Scholar 

  8. D. Fisher, B. Kalinin and R. Spatzier, Global rigidity of higher rank Anosov actions on tori and nilmanifolds, Journal of the American Mathematical Society 26 (2013), 167–198.

    Article  MathSciNet  Google Scholar 

  9. G. Folland, Real Analysis, Pure and Applied Mathematics (New York), John Wiley & Sons, New York, 1999.

    MATH  Google Scholar 

  10. M. Fréchet and J. Shohat, A proof of the generalized second-limit theorem in the theory of probability, Transactions of the American Mathematical Society 33 (1931), 533–543.

    Article  MathSciNet  Google Scholar 

  11. A. Gorodnik and R. Spatzier, Exponential mixing of nilmanifold automorphisms, Journal d’Analyse Mathématique 123 (2014), 355–396.

    Article  MathSciNet  Google Scholar 

  12. J.-L. Journé, A regularity lemma for functions of several variables, Revista Matemática Iberoamericana 4 (1988), 187–193.

    Article  MathSciNet  Google Scholar 

  13. D. Kelmer and P. Sarnak, Strong spectral gaps for compact quotients of products of PSL(2, ℝ), Journmal of the European Mathematical Society 11 (2009), 283–313.

    Article  MathSciNet  Google Scholar 

  14. S. Le Borgne, Principes d’invariance pour les flots diagonaux sur SL(d,ℝ) / SL(d, ℤ) Annales de l’Institut Henri Poincaré. Probabilités et Statistiques 38 (2002), 581–612.

    Article  MathSciNet  Google Scholar 

  15. Y. Le Jan, The central limit theorem for the geodesic flow on noncompact manifolds of constant negative curvature, Duke Mathematical Journal 74 (1994), 159–175.

    Article  MathSciNet  Google Scholar 

  16. A. N. Livšic, Cohomology of dynamical systems, Mathematics of the USSR-Izvestija 6 (1972), 1278–1301.

    Article  Google Scholar 

  17. I. Melbourne and A. Török, Central limit theorems and Invariance principles for time-one maps of hyperbolic flows, Communications in Mathematical Physics 229 (2002), 57–71.

    Article  MathSciNet  Google Scholar 

  18. S. Mozes, Mixing of all orders of Lie groups actions, Inventiones Mathematicaer 107 (1992), 235–241.

    Article  MathSciNet  Google Scholar 

  19. M. Ratner, The central limit theorem on n dimensional manifolds of negative curvature, Israel Journal of Mathematics 16 (1973), 180–197.

    Article  MathSciNet  Google Scholar 

  20. M. Ratner, On Raghunathan’s measure conjecture, Annals of Mathematics 134 (1991), 545–607.

    Article  MathSciNet  Google Scholar 

  21. R. Shi, Expanding cone and applications to homogeneous dynamics, International Mathematics Research Notices (2019), Article no. rnz052.

  22. Y. G. Sinaĭ, The central limit theorem for geodesic flows on manifolds of constant negative curvature, Soviet Mathematics. Doklady 1 (1960), 938–987.

    MathSciNet  Google Scholar 

  23. A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms, Astérisque 358 (2013), 75–165.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Seonhee Lim, Weixiao Shen and Jiagang Yang for discussions related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronggang Shi.

Additional information

The author is supported by NSFC 11871158.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R. Central limit theorem and cohomological equation on homogeneous spaces. Isr. J. Math. 242, 891–931 (2021). https://doi.org/10.1007/s11856-021-2152-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2152-y

Navigation