Skip to main content
Log in

Lower deviations in β-ensembles and law of iterated logarithm in last passage percolation

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

For last passage percolation (LPP) on ℤ2 with exponential passage times, let Tn denote the passage time from (1, 1) to (n,n). We investigate the law of iterated logarithm of the sequence {Tn}n≥1; we show that \(\lim \,{\inf _{n \to \infty }}{{{T_n} - 4n} \over {{n^{1/3}}{{\left( {\log \,\log \,n} \right)}^{1/3}}}}\) almost surely converges to a deterministic negative constant and obtain some estimates on the same. This settles a conjecture of Ledoux (2018) where a related lower bound and similar results for the corresponding upper tail were proved. Our proof relies on a slight shift in perspective from point-to-point passage times to considering point-to-line passage times instead, and exploiting the correspondence of the latter to the largest eigenvalue of the Laguerre Orthogonal Ensemble (LOE). A key technical ingredient, which is of independent interest, is a new lower bound of lower tail deviation probability of the largest eigenvalue of β-Laguerre ensembles, which extends the results proved in the context of the β-Hermite ensembles by Ledoux and Rider (2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Baik, Painlevé expressions for LOE, LSE and interpolating ensembles, International Mathematics Research Notices 2002 (2002), 1739–1789.

    Article  MathSciNet  Google Scholar 

  2. J. Baik, P. Deift, K. T.-R. McLaughlin, P. Miller and X. Zhou, Optimal tail estimates for directed last passage site percolation with geometric random variables, Advances in Theoretical and Mathematical Physics 5 (2001), 1207–1250.

    Article  MathSciNet  Google Scholar 

  3. J. Baik and E. M. Rains, Algebraic aspects of increasing subsequences, Duke Mathematical Journal 109 (2001), 1–65.

    Article  MathSciNet  Google Scholar 

  4. J. Baik and E. M. Rains, Symmetrized random permutations, in Random Matrix Models and Their Applications, Mathematical Sciences Research Institute Publications, Vol. 40, Cambridge University Press, Cambridge, 2001, pp. 1–19.

    MATH  Google Scholar 

  5. J. Baik and T. M. Suidan, A GUE central limit theorem and universality of directed first and last passage site percolation. International Mathematics Research Notices 2005 (2005), 25–337.

    Article  MathSciNet  Google Scholar 

  6. Yu Baryshnikov, GUEs and queues, Probability Theory and Related Fields 119 (2001), 256–274.

    Article  MathSciNet  Google Scholar 

  7. T. Bodineau and J. Martin, A universality property for last-passage percolation paths close to the axis, Electronic Communications in Probability 10 (2005), 105–112.

    Article  MathSciNet  Google Scholar 

  8. A. Borodin, P. L. Ferrari, M. Prähofer and T. Sasamoto, Fluctuation Properties of the TASEP with Periodic Initial Configuration, Journal of Statistical Physics 129 (2007), 1055–1080.

    Article  MathSciNet  Google Scholar 

  9. I. Corwin, Z. Liu and D. Wang, Fluctuations of TASEP and LPP with general initial data, Annals of Applied Probability 26 (2016), 2030–2082.

    Article  MathSciNet  Google Scholar 

  10. I. Dumitriu and A. Edelman, Matrix models for beta ensembles, Journal of Mathematical Physics 43 (2002), 5830–5847.

    Article  MathSciNet  Google Scholar 

  11. W. FitzGerald and J. Warren, Point-to-line last passage percolation and the invariant measure of a system of reflecting Brownian motions, Probability Theory and Related Fields 178 (2020), 1221–171.

    Article  MathSciNet  Google Scholar 

  12. K. Johansson, Shape fluctuations and random matrices, Communications in Mathematical Physics 209 (2000), 437–476.

    Article  MathSciNet  Google Scholar 

  13. G. Kalai, Laws of iterated logarithm for random matrices and random permutation, http://mathoverflow.net/questions/142371/Laws-of-iterated-logarithm-for-random-matrices-and-random-permutation.

  14. M. Ledoux, A law of the iterated logarithm for directed last passage percolation, Journal of Theoretical Probability 31 (2018), 2366–2375.

    Article  MathSciNet  Google Scholar 

  15. M. Ledoux and B. Rider, Small deviations for beta ensembles, Electronic Journal of Probability 15 (2010), 1319–1343.

    Article  MathSciNet  Google Scholar 

  16. M. Löwe and F. Merkl, Moderate deviations for longest increasing subsequences: The upper tail, Communications in Pure and Applied Mathematics 54 (2001), 1488–1519.

    Article  MathSciNet  Google Scholar 

  17. M. Löwe, F. Merkl and S. Rolles, Moderate deviations for longest increasing subsequences: The lower tail, Journal of Theoretical Probability 15 (2002), 1031–1047.

    Article  MathSciNet  Google Scholar 

  18. G. B. Nguyen and D. Remenik, Non-intersecting Brownian bridges and the Laguerre orthogonal ensemble, Annales de l’Institut Henri Poincaré Probabilités et Statistiques 53 (2017), 2005–2029.

    Article  MathSciNet  Google Scholar 

  19. N. O’Connell and M. Yor, A representation for non-colliding random walks, Electronic communications in probability 7 (2002), 1–12.

    MathSciNet  MATH  Google Scholar 

  20. E. Paquette and O. Zeitouni, Extremal eigenvalue correlations in the GUE minor process and a law of fractional logarithm, Annals of Probability 45 (2017), 4112–4166.

    Article  MathSciNet  Google Scholar 

  21. J. A. Ramirez, B. Rider and B. Virág, Beta ensembles, stochastic Airy spectrum, and a diffusion, Journal of the American Mathematical Society 24 (2011), 919–944.

    Article  MathSciNet  Google Scholar 

  22. H. Rost, Nonequilibrium behavior of a many particle process: Density profile and local equilibria, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 58 (1981), 41–53.

    Article  MathSciNet  Google Scholar 

  23. T. Sasamoto, Spatial correlations of the 1d KPZ surface on a flat substrate, Journal of Physics. A. Mathematical and General 38 (2005), L549–L556.

    Article  MathSciNet  Google Scholar 

  24. T. Suidan, A remark on a theorem of Chatterjee and last passage percolation, Journal of Physics. A. Mathematical and General 39 (2006), 8977–8981.

    Article  MathSciNet  Google Scholar 

  25. T. Tao and V. Vu, Random matrices: Universality of ESDs and the circular law, Annals of Probability 38 (2010), 2023–2065.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Ofer Zeitouni for bringing the law of iterated logarithm question to their attention and Ivan Corwin for pointing out the LOE connection. RB is partially supported by a Ramanujan Fellowship (SB/S2/RJN-097/2017) from the Government of India, an ICTS-Simons Junior Faculty Fellowship, DAE project no. 12-R&D-TFR-5.10-1100 via ICTS and Infosys Foundation via the Infosys-Chandrasekharan Virtual Centre for Random Geometry of TIFR. SG is partially supported by a Sloan Research Fellowship in Mathematics and NSF Award DMS-1855688. MH is supported by a summer grant and the Richman Fellowship of the UC Berkeley Mathematics Department. MK is partially supported by UGC Centre for Advanced Study and the SERB-MATRICS grant MTR2017/000292.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riddhipratim Basu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, R., Ganguly, S., Hegde, M. et al. Lower deviations in β-ensembles and law of iterated logarithm in last passage percolation. Isr. J. Math. 242, 291–324 (2021). https://doi.org/10.1007/s11856-021-2135-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2135-z

Navigation