Skip to main content
Log in

Stability of Talagrand’s Gaussian transport-entropy inequality via the Föllmer process

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We establish a dimension-free improvement of Talagrand’s Gaussian transport-entropy inequality, under the assumption that the measures satisfy a Poincaré inequality. We also study stability of the inequality, in terms of relative entropy, when restricted to measures whose covariance matrix trace is smaller than the ambient dimension. In case the covariance matrix is strictly smaller than the identity, we give dimension-free estimates which depend on its eigenvalues. To complement our results, we show that our conditions cannot be relaxed, and that there exist measures with covariance larger than the identity, for which the inequality is not stable, in relative entropy. To deal with these examples, we show that, without any assumptions, one can always get quantitative stability estimates in terms of relative entropy to Gaussian mixtures. Our approach gives rise to a new point of view which sheds light on the hierarchy between Fisher information, entropy and transportation distance, and may be of independent interest. In particular, it implies that the described results apply verbatim to the log-Sobolev inequality and improve upon some known estimates in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Barchiesi, A. Brancolini and V. Julin, Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality, Annals of Probability 45 (2017), 668–697.

    Article  MathSciNet  Google Scholar 

  2. S. G. Bobkov, N. Gozlan, C. Roberto and P.-M. Samson, Bounds on the deficit in the logarithmic Sobolev inequality, Journal of Functional Analysis 267 (2014), 4110–4138.

    Article  MathSciNet  Google Scholar 

  3. C. Borell, The Ehrhard inequality, Comptes Rendus Mathématique. Académie des Sciences. Paris 337 (2003), 663–666.

    Article  MathSciNet  Google Scholar 

  4. A. A. Borovkov and S. A. Utev, An inequality and a characterization of the normal distribution connected with it, Teoriya Veroyatnosteĭ i ee Primeneniya 28 (1983), 209–218.

    MathSciNet  MATH  Google Scholar 

  5. H. J. Brascamp and E. H. Lieb, On extensions of the Brunn—Minkowski and Prékopa—Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, Journal of Functional Analysis 22 (1976), 366–389.

    Article  Google Scholar 

  6. E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model, Kinetic and Related Models 3 (2010), 85–122.

    Article  MathSciNet  Google Scholar 

  7. A. Cianchi, N. Fusco, F. Maggi and A. Pratelli, On the isoperimetric deficit in Gauss space, American Journal of Mathematics 133 (2011), 131–186.

    Article  MathSciNet  Google Scholar 

  8. D. Cordero-Erausquin, Transport inequalities for log-concave measures, quantitative forms, and applications, Canadian Journal of Mathematics 69 (2017), 481–501.

    Article  MathSciNet  Google Scholar 

  9. T. A. Courtade, M. Fathi and A. Pananjady, Quantitative stability of the entropy power inequality, Institute of Electrical and Electronics Engineers. Transactions on Information Theory 64 (2018), 5691–5703.

    Article  MathSciNet  Google Scholar 

  10. T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley-Interscience, Hoboken, NJ, 2006.

    MATH  Google Scholar 

  11. R. Eldan and J. R. Lee, Regularization under diffusion and anticoncentration of the information content, Duke Mathematical Journal 167 (2018), 969–993.

    Article  MathSciNet  Google Scholar 

  12. R. Eldan, J. Lehec and Y. Shenfeld, Stability of the logarithmic Sobolev inequality via the Föllmer process, Annales de l’Institut Henri Poincaré Probabilités et Statistiques 56 (2020), 2253–2269.

    Article  MathSciNet  Google Scholar 

  13. R. Eldan and D. Mikulincer, Stability of the Shannon—Stam inequality via the Föllmer process, Probability Theory and Related Fields 177 (2020), 891–922.

    Article  MathSciNet  Google Scholar 

  14. R. Eldan, D. Mikulincer and A. Zhai, The CLT in high dimensions: quantitative bounds via martingale embedding, Annals of Probability 48 (2020), 2494–2524.

    Article  MathSciNet  Google Scholar 

  15. M. Fathi, E. Indrei and M. Ledoux, Quantitative logarithmic Sobolev inequalities and stability estimates, Discrete and Continuous Dynamical Systems 36 (2016), 6835–6853.

    Article  MathSciNet  Google Scholar 

  16. F. Feo, E. Indrei, M. R. Posteraro and C. Roberto, Some remarks on the stability of the log-Sobolev inequality for the Gaussian measure, Potential Analysis 47 (2017), 37–52.

    Article  MathSciNet  Google Scholar 

  17. H. Föllmer, An entropy approach to the time reversal of diffusion processes, in Stochastic Differential Systems (Marseille-Luminy 1984), Lecture Notes in Control and Information Sciences, Vol. 69, Springer, Berlin, 1985, pp. 156–163.

    Google Scholar 

  18. H. Föllmer, Time reversal on Wiener space, in Stochastic Processes—Mathematics and Physics (Bielefeld, 1984), Lecture Notes in Mathematics, Vol. 1158, Springer, Berlin, 1986, pp. 119–129.

    Google Scholar 

  19. I. Gentil, C. Léonard and L. Ripani, About the analogy between optimal transport and minimal entropy, Annales de la Faculté des Sciences de Toulouse. Mathématiques 26 (2017), 569–601.

    Article  MathSciNet  Google Scholar 

  20. N. Gozlan and C. Léonard, Transport inequalities. A survey, Markov Process and Related Fields 16 (2010), 635–736.

    MathSciNet  MATH  Google Scholar 

  21. L. Gross, Logarithmic Sobolev inequalities, American Journal of Mathematics 97 (1975), 1061–1083.

    Article  MathSciNet  Google Scholar 

  22. A. V. Kolesnikov and E. D. Kosov, Moment measures and stability for Gaussian inequalities, Theory of Stochastic Processes 22 (2017), 47–61.

    MathSciNet  MATH  Google Scholar 

  23. M. Ledoux, The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, Vol. 89, American Mathematical Society, Providence, RI, 2001.

    Google Scholar 

  24. M. Ledoux, I. Nourdin and G. Peccati, A Stein deficit for the logarithmic Sobolev inequality, Science China. Mathematics 60 (2017), 1163–1180.

    Article  MathSciNet  Google Scholar 

  25. J. Lehec, Representation formula for the entropy and functional inequalities, Annales de l’Institut Henri Poincaré Probabilités et Statistiques 49 (2013), 885–899.

    Article  MathSciNet  Google Scholar 

  26. E. Mossel and J. Neeman, Robust dimension free isoperimetry in Gaussian space, Annals of Probability 43 (2015), 971–991.

    Article  MathSciNet  Google Scholar 

  27. B. Øksendal, Stochastic Differential Equations, Universitext, Springer, Berlin, 2003.

    Google Scholar 

  28. G. Paouris and P. Valettas, A Gaussian small deviation inequality for convex functions, Annals of Probability 46 (2018), 1441–1454.

    Article  MathSciNet  Google Scholar 

  29. P.-M. Samson, Concentration of measure inequalities for Markov chains and Φ-mixing processes, Annals of Probability 28 (2000), 416–461.

    Article  MathSciNet  Google Scholar 

  30. M. Talagrand, Transportation cost for Gaussian and other product measures, Geometric and Functional Analysis 6 (1996), 587–600.

    Article  MathSciNet  Google Scholar 

  31. C. Villani, Optimal Transport, Grundlehren der Mathematischen Wissenschaften, Vol. 338, Springer, Berlin, 2009.

    Google Scholar 

Download references

Acknowledgments

We wish to thank Ronen Eldan, Max Fathi, Renan Gross, Emanuel Indrei and Yair Shenfeld for useful discussions and for their comments concerning a preliminary draft of this work. We are also grateful to the anonymous referee for carefully reading this paper and providing thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Mikulincer.

Additional information

Supported by an Azrieli foundation fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikulincer, D. Stability of Talagrand’s Gaussian transport-entropy inequality via the Föllmer process. Isr. J. Math. 242, 215–241 (2021). https://doi.org/10.1007/s11856-021-2129-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2129-x

Navigation