Skip to main content
Log in

The complete enumeration of 4-polytopes and 3-spheres with nine vertices

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We describe an algorithm to enumerate polytopes. This algorithm is then implemented to give a complete classification of combinatorial spheres of dimension 3 with 9 vertices and decide polytopality of those spheres. In order to decide polytopality, we generate polytopes by adding suitable points to polytopes with less than 9 vertices and therefore realize as many as possible of the combinatorial spheres as polytopes. For the rest, we prove non-realizability with techniques from oriented matroid theory. This yields a complete enumeration of all combinatorial types of 4-dimensional polytopes with 9 vertices. It is shown that all of those combinatorial types are rational: They can be realized with rational coordinates. We find 316 014 combinatorial spheres on 9 vertices. Of those, 274 148 can be realized as the boundary complex of a four-dimensional polytope and the remaining 41 866 are non-polytopal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Altshuler, J. Bokowski and L. Steinberg, The classification of simplicial 3-spheres with nine vertices into polytopes and nonpolytopes, Discrete Mathematics 31 (1980), 115–124.

    Article  MathSciNet  Google Scholar 

  2. A. Altshuler, Neighborly 4-polytopes and neighborly combinatorial 3-manifolds with ten vertices, Canadian Journal of Mathematics 29 (1977), 400–420.

    Article  MathSciNet  Google Scholar 

  3. A. Altshuler and L. Steinberg, Neighborly 4-polytopes with 9 vertices, Journal of Combinatorial Theory, Series A 15 (1973), 270–287.

    Article  MathSciNet  Google Scholar 

  4. A. Altshuler and L. Steinberg, Neighborly combinatorial 3-manifolds with 9 vertices, Discrete Mathematics 8 (1974), 113–137.

    Article  MathSciNet  Google Scholar 

  5. A. Altshuler and L. Steinberg, An enumeration of combinatorial 3-manifolds with nine vertices, Discrete Mathematics 16 (1976), 91–108.

    Article  MathSciNet  Google Scholar 

  6. A. Altshuler and L. Steinberg, Enumeration of the quasisimplicial 3-spheres and 4-polytopes with eight vertices, Pacific journal of mathematics 113 (1984), 269–288.

    Article  MathSciNet  Google Scholar 

  7. A. Altshuler and L. Steinberg, The complete enumeration of the 4-polytopes and 3-spheres with eight vertices, Pacific Journal of Mathematics 117 (1985), 1–16.

    Article  MathSciNet  Google Scholar 

  8. D. Barnette, The triangulations of the 3-sphere with up to 8 vertices, Journal of Combinatorial Theory, Series A 14 (1973), 37–52.

    Article  MathSciNet  Google Scholar 

  9. M. M. Bayer, Graphs, skeleta and reconstruction of polytopes, Acta Mathematica Hungarica 155 (2018), 61–73.

    Article  MathSciNet  Google Scholar 

  10. A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics and its Applications, Vol. 46, Cambridge University Press, Cambridge, 1999.

    Book  Google Scholar 

  11. J. Bokowski and J. Richter, On the finding of final polynomials, European Journal of Combinatorics 11 (1990), 21–34.

    Article  MathSciNet  Google Scholar 

  12. J. Bokowski and B. Sturmfels, Polytopal and nonpolytopal spheres an algorithmic approach, Israel Journal of Mathematics 57 (1987), 257–271.

    Article  MathSciNet  Google Scholar 

  13. J. Bokowski and B. Sturmfels, Computational Synthetic Geometry, Lecture Notes in Mathematics, Vol. 1355, Springer, Berlin, 1989.

    Book  Google Scholar 

  14. D. Bremner, M. Dutour Sikirić, D. V. Pasechnik, T. Rehn and A. Schürmann, Computing symmetry groups of polyhedra, LMS Journal of computation and mathematics 17 (2014), 565–581.

    Article  MathSciNet  Google Scholar 

  15. E. A. Bender and N. C. Wormald, The number of rooted convex polyhedra, Canadian Mathematical Bulletin 31 (1988), 99–102.

    Article  MathSciNet  Google Scholar 

  16. P. Brinkmann and G. M. Ziegler, A flag vector of a 3-sphere that is not the flag vector of a 4-polytope. Mathematika 63 (2017), 260–271.

    Article  MathSciNet  Google Scholar 

  17. P. Brinkmann and G. M. Ziegler, Small f-fectors of 3-spheres and of 4-polytopes, Mathematics of Computation 87 (2018), 2955–2975.

    Article  MathSciNet  Google Scholar 

  18. P. Engel, On the enumeration of polyhedra, Discrete Mathematics 41 (1982), 215–218.

    Article  MathSciNet  Google Scholar 

  19. P. Engel, The enumeration of four-dimensional polytopes, Discrete mathematics 91 (1991), 9–31.

    Article  MathSciNet  Google Scholar 

  20. W. Espenschied, Graphs of Polytopes, PhD thesis, University of Kansas, 2014. http://hdl.handle.net/1808/18668.

  21. M. Firsching, Realizability and inscribability for simplicial polytopes via nonlinear optimization, Mathematical Programming 166 (2017), 273–295.

    Article  MathSciNet  Google Scholar 

  22. M. Firsching, The complete enumeration of 4-polytopes and 3-spheres with nine vertices, http://arxiv.org/abs/1803.05205v2

  23. E. Fusy, Counting d-polytopes with d + 3 vertices, Electronic Journal of Combinatorics 13 (2006), 1–25.

    Article  MathSciNet  Google Scholar 

  24. B. Grünbaum, Convex Polytopes, Pure and Applied Mathematics, Vol. 16, Wiley, New York, 1967.

    MATH  Google Scholar 

  25. B. Grünbaum and V. P. Sreedharan, An enumeration of simplicial 4-polytopes with 8 vertices, Journal of Combinatorial Theory 2 (1967), 437–465.

    Article  MathSciNet  Google Scholar 

  26. T. Junttila and P. Kaski, bliss: A Tool for Computing Automorphism Groups and Canonical Labelings of Graphs, version 0.73, 2015, http://www.tcs.hut.fi/Software/bliss/.

  27. M. Joswig, M. Panizzut and B. Sturmfels, The Schläfli fan, Discrete & Computational Geometry 2 (2020), 355–381.

    Article  Google Scholar 

  28. V. Kaibel and A. Schwartz, On the complexity of polytope isomorphism problems, Graphs and combinatorics 19 (2003), 215–230.

    Article  MathSciNet  Google Scholar 

  29. F. H. Lutz, 3-Manifolds, http://page.math.tu-berlin.de/-lutz/stellar/3-manifolds.html.

  30. F. H. Lutz, Combinatorial 3-manifolds with 10 vertices, Beiträge zur Algebra und Geometrie 49 (2008), 97–106.

    MathSciNet  MATH  Google Scholar 

  31. J. Richter-Gebert, Realization Spaces of Polytopes, Lecture Notes in mathematics, Vol. 1643, Springer, Berlin, 1996.

    Book  Google Scholar 

  32. J. Richter-Gebert and G. M. Ziegler, Realization spaces of 4-polytopes are universal, Bulletin of the American Mathematical Society 32 (1995), 403–412.

    Article  MathSciNet  Google Scholar 

  33. J. Richter-Gebert and G. M. Ziegler, Oriented matroids, in Handbook of Discrete and Computational Geometry, CRC Press Series on Discrete Mathematics and its Applications, CRC, Boca Raton, FL, 1997, pp. 11–132.

    Google Scholar 

  34. L. B. Richmond and N. C. Wormald, The asymptotic number of convex polyhedra, Transactions of the American Mathematical Society 273 (1982), 721–735.

    Article  MathSciNet  Google Scholar 

  35. L. Schewe, Nonrealizable Minimal Vertex Triangulations of Surfaces: Showing Nonrealizability Using Oriented Matroids and Satisfiability Solvers, Discrete & Computational Geometry 43 (2010), 289–302.

    Article  MathSciNet  Google Scholar 

  36. The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.1), http://www.sagemath.org.

  37. T. Sulanke and F. H. Lutz, Isomorphism-free lexicographic enumeration of triangulated surfaces and 3-manifolds, European Journal of Combinatorics 30 (2009), 1965–1979.

    Article  MathSciNet  Google Scholar 

  38. N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org/.

  39. E. Steinitz, Polyeder und Raumeinteilungen, in Encyclopädie der Mathematischen Wissenschaften, Band 3-1-2, Teubner, Leipzig, 1922, pp. 1–139.

    Google Scholar 

  40. W. T. Tutte, On the enumeration of convex polyhedra, Journal of Combinatorial Theory, Series B 28 (1980), 105–126.

    Article  MathSciNet  Google Scholar 

  41. G. M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, Vol. 152, Springer, New York, 1995.

    Book  Google Scholar 

Download references

Acknowledgments

I am very grateful to Günter M. Ziegler for insightful discussions and suggestions. I would like to thank an anonymous referee for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Firsching.

Additional information

This research was supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics.’

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firsching, M. The complete enumeration of 4-polytopes and 3-spheres with nine vertices. Isr. J. Math. 240, 417–441 (2020). https://doi.org/10.1007/s11856-020-2070-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2070-4

Navigation