Skip to main content
Log in

Boundedness of hyperbolic components of Newton maps

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We investigate boundedness of hyperbolic components in the moduli space of Newton maps. For quartic maps, (i) we prove hyperbolic components possessing two distinct attracting cycles each of period at least two are bounded, and (ii) we characterize the possible points on the boundary at infinity for some other types of hyperbolic components. For general maps, we prove hyperbolic components whose elements have fixed superattracting basins mapping by degree at least three are unbounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Baker and R. Rumely, Potential Theory and Dynamics on the Berkovich Projective Line, Mathematical Surveys and Monographs, Vol. 159, American Mathematical Society, Providence, RI, 2010.

    Book  Google Scholar 

  2. J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 36, Springer, Berlin, 1998

    Book  Google Scholar 

  3. A. Bonifant, X. Buff and J. Milnor, Antipode preserving cubic maps: the fjord theorem, Proceedings of the London Mathematical Society 116 (2018), 670–728.

    Article  MathSciNet  Google Scholar 

  4. A. Bonifant, J. Kiwi and J. Milnor, Cubic polynomial maps with periodic critical orbit. II. Escape regions, Conformal Geometry and Dynamics 14 (2010), 68–112.

    Article  MathSciNet  Google Scholar 

  5. P. Cayley, Desiderata and suggestions: No. 3. The Newton-Fourier imaginary problem, American Journal of Mathematics 2 (1879), 97.

    Article  MathSciNet  Google Scholar 

  6. L. DeMarco, Iteration at the boundary of the space of rational maps, Duke Mathematical Journal 130 (2005), 169–197.

    Article  MathSciNet  Google Scholar 

  7. L. DeMarco and X. Faber, Degenerations of complex dynamical systems, Forum of Mathematics. Sigma 2 (2014), Article no. e6.

  8. L. DeMarco and X. Faber, Degenerations of complex dynamical systems II: analytic and algebraic stability, Mathematische Annalen 365 (2016), 1669–1699.

    Article  MathSciNet  Google Scholar 

  9. Z. Denkowska and M.P. Denkowski, A long and winding road to definable sets, Journal of Singularities 13 (2015), 57–86.

    Article  MathSciNet  Google Scholar 

  10. A. Douady and J. H. Hubbard, Etude dynamique des polynômes complexes. Partie Publications Mathématiques d’Orsay, Vol. 84, 85, Universite de Paris-Sud, Departement de Mathematiques, Orsay, 1984/1985.

    MATH  Google Scholar 

  11. A. Epstein, Infinitesimal Thurston rigidity and the Fatou-Shishikura inequality, https://arxiv.org/abs/math/9902158.

  12. A. L. Epstein, Bounded hyperbolic components of quadratic rational maps, Ergodic Theory and Dynamical Systems 20 (2000), 727–748.

    Article  MathSciNet  Google Scholar 

  13. X. Faber, Topology and geometry of the Berkovich ramification locus for rational functions, I, Manuscripta Mathematica 142 (2013), 439–474.

    Article  MathSciNet  Google Scholar 

  14. P. Haïssinsky and L. Tan, Convergence of pinching deformations and matings of geometrically finite polynomials, Fundamenta Mathematicae 181 (2004), 143–188.

    Article  MathSciNet  Google Scholar 

  15. A. Kameyama, On Julia sets of postcritically finite branched coverings. I. Coding of Julia sets, Journal of the Mathematical Society of Japan 55 (2003), 439–454.

    Article  MathSciNet  Google Scholar 

  16. J. Kiwi, Puiseux series polynomial dynamics and iteration of complex cubic polynomials, Université de Grenoble. Annales de l’Institut Fourier 56 (2006), 1337–1404.

    Article  MathSciNet  Google Scholar 

  17. J. Kiwi, Puiseux series dynamics of quadratic rational maps, Israel Journal of Mathematics 201 (2014), 631–700.

    Article  MathSciNet  Google Scholar 

  18. J. Kiwi, Rescaling limits of complex rational maps, Duke Mathematical Journal 164 (2015), 1437–1470.

    Article  MathSciNet  Google Scholar 

  19. S. Łojasiewicz, On semi-analytic and subanalytic geometry, in Panoramas of Mathematics (Warsaw, 1992/1994), Banach Center Publications, Vol. 34, Polish Academy of Sciences Institute of Mathematics, Warsaw, 1995, pp. 89–104.

    Google Scholar 

  20. R. Lodge, Y. Mikulich and D. Schleicher, A classification of postcritically finite Newton maps, https://arxiv.org/abs/1510.02771.

  21. R. Lodge, Y. Mikulich and D. Schleicher, Combinatorial properties of Newton maps, https://arxiv.org/abs/1510.02761.

  22. M. Lyubich, The quadratic family as a qualitatively solvable model of chaos, Notices of the American Mathematical Society 47 (2000), 1042–1052.

    MathSciNet  MATH  Google Scholar 

  23. P. M. Makienko, Unbounded components in parameter space ofrational maps, Conformal Geometry and Dynamics 4 (2000), 1–21.

    Article  MathSciNet  Google Scholar 

  24. C. McMullen, Automorphisms of rational maps, in Holomorphic Functions and Moduli, Vol. I (Berkeley, CA, 1986), Mathematical Sciences Research Institute Publications, Vol. 10, Springer, New York, 1988, pp. 31–60.

    Chapter  Google Scholar 

  25. C. T. McMullen, The classification of conformal dynamical systems, in Current Developments in Mathematics, 1995 (Cambridge, MA), International Press, Cambridge, MA, 1994, pp. 323–360.

    Google Scholar 

  26. C. T. McMullen, Complex Dynamics and Renormalization, Annals of Mathematics Studies, Vol. 135, Princeton University Press, Princeton, NJ, 1994.

    MATH  Google Scholar 

  27. J. Milnor, Hyperbolic component boundaries, https://www.math.stonybrook.edu/~jack/HCBkoreaPrint.pdf.

  28. J. Milnor, Self-similarity and hairiness in the Mandelbrot set, in Computers in Geometry and Topology (Chicago, IL, 1986), Lecture Notes in Pure and Applied Mathematics, Vol. 114, Dekker, New York, 1989, pp. 211–257.

    Google Scholar 

  29. J. Milnor, Geometry and dynamics of quadratic rational maps, Experimental Mathematics 2 (1993), 37–83.

    Article  MathSciNet  Google Scholar 

  30. J. Milnor, Dynamics in One Complex Variable, Annals of Mathematics Studies, Vol. 160, Princeton University Press, Princeton, NJ, 2006.

    MATH  Google Scholar 

  31. J. Milnor, Cubic polynomial maps with periodic critical orbit. I, in Complex Dynamics, A K Peters, Wellesley, MA, 2009, pp. 333–411.

    Chapter  Google Scholar 

  32. J. Milnor, Hyperbolic components, in Conformal Dynamics and Hyperbolic Geometry, Contemporary Mathematics, Vol. 573, American Mathematical Society, Providence, RI, 2012, pp. 183–232.

    Chapter  Google Scholar 

  33. H. Nie, Iteration at the boundary of Newton maps, https://arxiv.org/abs/1803.08032.

  34. M. Noonan, Fractal Stream, http://pi.math.cornell.edu/~noonan/fstream.html.

  35. C. L. Petersen, No elliptic limits for quadratic maps, Ergodic Theory and Dynamical Systems 19 (1999), 127–141.

    Article  MathSciNet  Google Scholar 

  36. C. L. Petersen and G. Ryd, Convergence of rational rays in parameter spaces, in The Mandelbrot Set, Theme and Variations, London Mathematical Society Lecture Note Series, Vol. 274, Cambridge University Press, Cambridge, 2000, pp. 161–172.

    Chapter  Google Scholar 

  37. K. M. Pilgrim, Cylinders for iterated rational maps, Ph.D. Thesis, University of California, Berkeley, ProQuest LLC, Ann Arbor, MI, 1994.

    Google Scholar 

  38. M. Rees, Components of degree two hyperbolic rational maps, Inventiones Mathematicae 100 (1990), 357–382.

    Article  MathSciNet  Google Scholar 

  39. P. Roesch, Hyperbolic components of polynomials with a fixed critical point of maximal order, Annales Scientifiques de l’Ecole Normale Superieure 40 (2007), 901–949.

    Article  MathSciNet  Google Scholar 

  40. P. Roesch, X. Wang and Y. Yin, Moduli space of cubic Newton maps, Advances in Mathematics 322 (2017), 1–59.

    Article  MathSciNet  Google Scholar 

  41. M. Shishikura, On the quasiconformal surgery of rational functions, Annales Scientifiques de l’Ecole Normale Superieure 20 (1987), 1–29.

    Article  MathSciNet  Google Scholar 

  42. J. H. Silverman, The space of rational maps on P1, Duke Mathematical Journal 94 (1998), 41–77.

    Article  MathSciNet  Google Scholar 

  43. L. Tan, On pinching deformations of rational maps, Annales Scientifiques de l’Ecole Normale Superieure 35 (2002), 353–370.

    Article  MathSciNet  Google Scholar 

  44. X. Wang, Hyperbolic components and cubic polynomials, https://arxiv.org/abs/1710.03955.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongming Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, H., Pilgrim, K.M. Boundedness of hyperbolic components of Newton maps. Isr. J. Math. 238, 837–869 (2020). https://doi.org/10.1007/s11856-020-2044-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2044-6

Navigation