Skip to main content
Log in

Algebrable sets of hypercyclic vectors for convolution operators

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We show that several convolution operators on the space of entire functions, such as the MacLane operator, support a dense hypercyclic algebra that is not finitely generated. Birkhoff’s operator also has this property on the space of complex-valued smooth functions on the real line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Aron, D. García and M. Maestre, Linearity in non-linear problems, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 95 (2001), 7–12.

    MathSciNet  MATH  Google Scholar 

  2. R. M. Aron, L. Bernal González, D. M. Pellegrino and J. B. Seoane Sepúlveda, Lineability: The Search for Linearity in Mathematics, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016.

    MATH  Google Scholar 

  3. R. M. Aron, J. A. Conejero, A. Peris and J. B. Seoane Sepúlveda, Powers of hypercyclic functions for some classical hypercyclic operators, Integral Equations Operator Theory 58 (2007), 591–596.

    Article  MathSciNet  Google Scholar 

  4. R. M. Aron, J. A. Conejero, A. Peris and J. B. Seoane Sepúlveda, Sums and products of bad functions, in Function Spaces, Contemporary Mathematics, Vol. 435, American Mathematical Society, Providence, RI, 2007, pp. 47–52.

    Article  MathSciNet  Google Scholar 

  5. A. Bartoszewicz and S. Głąb, Strong algebrability of sets of sequences and functions, Proceedings of the American Mathematical Society 141 (2013), 827–835.

    Article  MathSciNet  Google Scholar 

  6. F. Bayart, R. Ernst and Q. Menet, Non-existence of frequently hypercyclic subspaces for P(D), Israel Journal of Mathematics 214 (2016), 149–166.

    Article  MathSciNet  Google Scholar 

  7. F. Bayart and É. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Mathematics, Vol. 179, Cambridge University Press, Cambridge, 2009.

  8. L. Bernal-González and A. Montes-Rodríguez, Universal functions for composition operators, Complex Variables Theory and Applications 27 (1995), 47–56.

    Article  MathSciNet  Google Scholar 

  9. L. Bernal-González, D. Pellegrino and J. B. Seoane-Sepúlveda, Linear subsets of nonlinear sets in topological vector spaces, Bulletin of the American Mathematical Society 51 (2014), 71–130.

    Article  MathSciNet  Google Scholar 

  10. J. Bès, J. A. Conejero and D. Papathanasiou, Convolution operators supporting hypercyclic algebras, Journal of Mathematical Analysis and Applications 445 (2017), 1232–1238.

    Article  MathSciNet  Google Scholar 

  11. J. Bès, J. A. Conejero and D. Papathanasiou, Hypercyclic algebras for convolution and composition operators, Journal fo Functional Analysis 274 (2018), 2884–2905.

    Article  MathSciNet  Google Scholar 

  12. J. Bès and Q. Menet, Existence of common and upper frequently hypercyclic subspaces, Journal of Mathematical Analysis and Applications 432 (2015), 10–37.

    Article  MathSciNet  Google Scholar 

  13. A. Bonilla and K.-G. Grosse-Erdmann, Frequently hypercyclic subspaces, Monatshefte für Mathematik 168 (2012), 305–320.

    Article  MathSciNet  Google Scholar 

  14. D. Gale, Subalgebras of an algebra with a single generator are finitely generated, Proceedings of the American Mathematical Society 8 (1957), 929–930.

    Article  MathSciNet  Google Scholar 

  15. G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, Journal of Functional Analysis 98 (1991), 229–269.

    Article  MathSciNet  Google Scholar 

  16. M. González, F. León-Saavedra and A. Montes-Rodríguez, Semi-Fredholm theory: hypercyclic and supercyclic subspaces, Proceedings of the London Mathematical Society 81 (2000), 169–189.

    Article  MathSciNet  Google Scholar 

  17. K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Universitext, Springer, London, 2011.

    Google Scholar 

  18. F. León-Saavedra and A. Montes-Rodríguez, Spectral theory and hypercyclic subspaces, Transactions of the American Mathematical Society 353 (2001), 247–267.

    Article  MathSciNet  Google Scholar 

  19. Q. Menet, Hypercyclic subspaces on Fréchet spaces without continuous norm, Integral Equations and Operator Theory 77 (2013), 489–520.

    Article  MathSciNet  Google Scholar 

  20. Q. Menet, Hypercyclic subspaces and weighted shifts, Advances in Mathematics 255 (2014), 305–337.

    Article  MathSciNet  Google Scholar 

  21. Q. Menet, Existence and non-existence of frequently hypercyclic subspaces for weighted shifts, Proceedings of the American Mathematical Society 143 (2015), 2469–2477.

    Article  MathSciNet  Google Scholar 

  22. C. J. Read, The invariant subspace problem for a class of Banach spaces. II. Hypercyclic operators, Israel Journal of Mathematics 63 (1988), 1–40.

    Article  MathSciNet  Google Scholar 

  23. S. Shkarin, On the set of hypercyclic vectors for the differentiation operator, Israel Journal of Mathematics 180 (2010), 271–283.

    Article  MathSciNet  Google Scholar 

  24. J. Wengenroth, Hypercyclic operators on non-locally convex spaces, Proceedings of the American Mathematical Society 131 (2003), 1759–1761.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Bès.

Additional information

Dedicated to Joe Diestel and Victor Lomonosov

This work is supported in part byMEC, Project MTM 2016-7963-P. We also thank Fedor Nazarov and an anonymous referee for key observations for Section 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bès, J., Papathanasiou, D. Algebrable sets of hypercyclic vectors for convolution operators. Isr. J. Math. 238, 91–119 (2020). https://doi.org/10.1007/s11856-020-2024-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2024-x

Navigation