Skip to main content
Log in

The twisted group ring isomorphism problem over fields

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Similarly to how the classical group ring isomorphism problem asks, for a commutative ring R, which information about a finite group G is encoded in the group ring RG, the twisted group ring isomorphism problem asks which information about G is encoded in all the twisted group rings of G over R.

We investigate this problem over fields. We start with abelian groups and show how the results depend on the characteristic of R. In order to deal with non-abelian groups we construct a generalization of a Schur cover which exists also when R is not an algebraically closed field, but still linearizes all projective representations of a group. We then show that groups from the celebrated example of Everett Dade which have isomorphic group algebras over any field can be distinguished by their twisted group algebras over finite fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Broche Cristo, A. Herman, A. Konovalov, A. Olivieri, G. Olteanu, A. del Rio and I. Van Gelder, Wedderga—wedderburn decomposition of group algebras, version 4.7.3, hhttp://www.cs.st-andrews.ac.uk/~alexk/wedderga, 2015.

    Google Scholar 

  2. O. Broche and Á. del Río, Wedderburn decomposition of finite group algebras, Finite Fields and their Applications 13 (2007), 71–79.

    Article  MathSciNet  Google Scholar 

  3. R. Brauer, Representations of finite groups, in Lectures on Modern Mathematics, Vol. I, Wiley, New York, 1963, pp. 133–175.

    MATH  Google Scholar 

  4. Ch. W. Curtis and I. Reiner, Methods of Representation Theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, New York, 1981.

    Google Scholar 

  5. E. C. Dade, Deux groupes finis distincts ayant la même algèbre de groupe sur tout corps, Mathematische Zeitschrift 119 (1971), 345–348.

    Article  MathSciNet  Google Scholar 

  6. L. Dornhoff, Group Representation Theory. Part A: Ordinary Representation Theory, Pure and Applied Mathematics, Vol. 7, Marcel Dekker, New York, 1971.

    Google Scholar 

  7. The GAP Group, GAP–Groups, Algorithms, and Programming, Version 4.8.3, 2016, http://www.gap-system.org.

    Google Scholar 

  8. M. Hertweck, A counterexample to the isomorphism problem for integral group rings, Annals of Mathematics 154 (2001), 115–138.

    Article  MathSciNet  Google Scholar 

  9. I. M. Isaacs, Character Theory of Finite Groups, Pure and Applied Mathematics, Vol. 69, Academic Press, New York–London, 1976.

    Google Scholar 

  10. G. Karpilovsky, Projective Representations of Finite Groups, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 94, Marcel Dekker, New York, 1985.

    Google Scholar 

  11. G. Karpilovsky, The Schur Multiplier, London Mathematical Society Monographs, Vol. 2, The Clarendon Press, Oxford University Press, New York, 1987.

    Google Scholar 

  12. G. Karpilovsky, Group Representations. Vol. 2, North-Holland Mathematics Studies, Vol.‘177, North-Holland, Amsterdam, 1993.

    Google Scholar 

  13. C. Lassueur and J. Thévenaz, Universal p’-central extensions, Expositiones Mathematicae 35 (2017), 237–251.

    Article  MathSciNet  Google Scholar 

  14. L. Margolis and O. Schnabel, Twisted group ring isomorphism problem, Quarterly Journal of Mathematics 69 (2018), 1195–1219.

    MathSciNet  MATH  Google Scholar 

  15. G. Navarro, Character Theory and the McKay Conjecture, Cambridge Studies in Advanced Mathematics, Vol. 175, Cambridge University Press, Cambridge, 2018.

    Google Scholar 

  16. E. Nauwelaerts and F. Van Oystaeyen, The Brauer splitting theorem and projective representations of finite groups over rings, Journal of Algebra 112 (1988), 49–57.

    Article  MathSciNet  Google Scholar 

  17. D. S. Passman, The group algebras of groups of order p4 over a modular field, Michigan Mathematical Journal 12 (1965), 405–415.

    Article  MathSciNet  Google Scholar 

  18. D. S. Passman, The Algebraic Structure of Group Rings, Pure and Applied Mathematics, Wiley-Interscience, New York–London–Sydney, 1977.

    Google Scholar 

  19. K. W. Roggenkamp and L. Scott, Isomorphisms of p-adic group rings, Annals of Mathematics 126 (1987), 593–647.

    Article  MathSciNet  Google Scholar 

  20. N. Sambonet, The unitary cover of a finite group and the exponent of the Schur multiplier, Journal of Algebra 426 (2015), 344–364.

    Article  MathSciNet  Google Scholar 

  21. J. Schur, Untersuchungen ¨uber die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, Journal f¨ur die Reine und Angewandte Mathematik 132 (1907), 85–137.

    MATH  Google Scholar 

  22. S. K. Sehgal, Units in Integral Group Rings, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 69, Longman Scientific & Technical, Harlow, 1993.

    Google Scholar 

  23. A. Whitcomb, The Group Ring Problem, Thesis (Ph.D.)–The University of Chicago, ProQuest LLC, Ann Arbor, MI, 1968.

    Google Scholar 

  24. K. Yamazaki, A note on projective representations of finite groups, Scientific Papers of the College of General Education. University of Tokyo 14 (1964), 27–36.

    MathSciNet  MATH  Google Scholar 

  25. K. Yamazaki, On projective representations and ring extensions of finite groups, Journal of the Faculty of Science. University of Tokyo. Section I 10 (1964), 147–195.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We thank Yuval Ginosar for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofir Schnabel.

Additional information

The first author is a postdoctoral researcher of the Research Foundation Flanders (FWO—Vlaanderen). We are grateful for the Technion—Israel Institute of Technology, for supporting the first author’s visit to Haifa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margolis, L., Schnabel, O. The twisted group ring isomorphism problem over fields. Isr. J. Math. 238, 209–242 (2020). https://doi.org/10.1007/s11856-020-2017-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2017-9

Navigation