Skip to main content
Log in

The structure of random homeomorphisms

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In order to understand the structure of the “typical” element of a homeomorphism group, one has to study how large the conjugacy classes of the group are. When typical means generic in the sense of Baire category, this is well understood; see, e.g., the works of Glasner and Weiss, and Kechris and Rosendal. Following Dougherty and Mycielski we investigate the measure theoretic dual of this problem, using Christensen's notion of Haar null sets. When typical means random, that is, almost every with respect to this notion of Haar null sets, the behaviour of the homeomorphisms is entirely different from the generic case. For Homeo+([0, 1]) we describe the non-Haar null conjugacy classes and also show that their union is co-Haar null, for Homeo+(S1) we describe the non-Haar null conjugacy classes, and for U(l2) we show that, apart from the classes of the multishifts, all conjugacy classes are Haar null. As an application we affirmatively answer the question whether these groups can be written as the union of a meagre and a Haar null set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Akin, The General Topology of Dynamical Systems, Graduate Studies in Mathematics, Vol. 1, American Mathematical Society, Providence, RI, 1993.

  2. E. Akin, M. Hurley and J. A. Kennedy, Dynamics of topologically generic homeomor-phisms, Memoirs of the American Mathematical Society 164 (2003).

  3. S. Banach, Sur les lignes rectifiables et les surfaces dont l'aire est finie, Fundamenta Mathematicae 1 (1925), 225–236.

    Article  Google Scholar 

  4. H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Group Actions, London Mathematical Society Lecture Note Series, Vol. 232, Cambridge University Press, Cambridge, 1996.

  5. J. P. R. Christensen, On sets of Haar measure zero in abelian Polish groups, Israel Journal of Mathematics 13 (1973), 255–260.

    Article  MathSciNet  Google Scholar 

  6. M. P. Cohen and R. R. Kallman, Openly Haar null sets and conjugacy in Polish groups, Israel Journal of Mathematics 215 (2016), 1–30.

    Article  MathSciNet  Google Scholar 

  7. G. Cruaciun, P. Horja, M. Prunescu and T. Zamfirescu, Most homeomorphisms of the circle are semiperiodic, Archiv der Mathematik 64 (1995), 452–458.

    Article  MathSciNet  Google Scholar 

  8. U. B. Darji, M. Elekes, K. Kalina, V. Kiss and Z. Vidnyánszky, The structure of random automorphisms of countable structures, Transactions of the American Mathematical Society 371 (2019), 8829–8848.

    Article  MathSciNet  Google Scholar 

  9. R. Dougherty, Examples of nonshy sets, Fundamenta Mathematicae 144 (1994), 73–88.

    Article  MathSciNet  Google Scholar 

  10. R. Dougherty and J. Mycielski, The prevalence of permutations with infinite cycles, Fundamenta Mathematicae 144 (1994), 89–94.

    Article  MathSciNet  Google Scholar 

  11. T. Downarowicz, R. D. Mauldin, and T. T. Warnock, Random circle homeomorphisms, Ergodic Theory and Dynamical Systems 12 (1992), 441–458.

    Article  MathSciNet  Google Scholar 

  12. M. Elekes and D. Nagy, Haar null and haar meager sets: a survey and new results, Bulletin of the London Mathematical Society, to appear, http://arxiv.org/abs/1606.06607.

  13. S. Gao, Invariant Descriptive Set Theory, Pure and Applied Mathematics (Boca Raton), Vol. 293, CRC Press, Boca Raton, FL, 2009.

  14. N. Gill, A. G. O'Farrell and I. Short, Reversibility in the group of homeomorphisms of the circle, Bulletin of the London Mathematical Society 41 (2009), 885–897.

    Article  MathSciNet  Google Scholar 

  15. E. Glasner and B. Weiss, The universal minimal system for the group of homeomorphisms of the Cantor set, Fundamenta Mathematicae 176 (2003), 277–289.

    Article  MathSciNet  Google Scholar 

  16. E. Glasner and B. Weiss, Topological groups with Rokhlin properties, Colloquium Math-ematicum 110 (2008), 51–80.

    Article  MathSciNet  Google Scholar 

  17. S. Graf, R. D. Mauldin and S. C. Williams, Random homeomorphisms, Advances in Mathematics 60 (1986), 239–359.

    Article  MathSciNet  Google Scholar 

  18. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, Vol. 54, Cambridge University Press, Cambridge, 1995.

  19. A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Vol. 156, Springer, New York, 1995.

  20. A. S. Kechris and C. Rosendal, Turbulence, amalgamation, and generic automorphisms of homogeneous structures, Proceedings of the London Mathematical Society 94 (2007), 302–350.

    Article  MathSciNet  Google Scholar 

  21. T. L. Kriete, III, An elementary approach to the multiplicity theory of multiplication operators, Rocky Mountain Journal of Mathematics 16 (1986), 23–32.

    Article  MathSciNet  Google Scholar 

  22. A. G. O'Farrell, Conjugacy involutions, and reversibility for real homeomorphisms, Irish Mathematical Society Bulletin 54 (2004), 41–52.

    MathSciNet  MATH  Google Scholar 

  23. W. Parry, Topics in Ergodic Theory, Cambridge Tracts in Mathematics, Vol. 75, Cambridge University Press, Cambridge-New York, 1981.

  24. H. Shi, Shyness of sets in the space of automorphisms on [0, 1], Acta Mathematica Hungarica 89 (2000), 135–147.

    Article  MathSciNet  Google Scholar 

  25. H. Shi and B. S. Thomson, Haar null sets in the space of automorphisms on [0, 1], Real Analysis Exchange 24 (1998/99), 337–350.

    Article  MathSciNet  Google Scholar 

  26. J. K. Truss, Generic automorphisms of homogeneous structures, Proceedings of the London Mathematical Society 65 (1992), 121–141.

    Article  MathSciNet  Google Scholar 

  27. D. X. Xia, Measure and integration theory on infinite-dimensional spaces. Abstract harmonic analysis, Pure and Applied Mathematics, Vol. 48, Academic Press, New York-London, 1972.

Download references

Acknowledgements

We would like to thank R. Balka, Z. Gyenis, A. Kechris, C. Rosendal, S. Solecki and P. Wesolek for many valuable remarks and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Kiss.

Additional information

The second, fourth and fifth authors were partially supported by the National Research, Development and Innovation Office—NKFIH, grants no. 113047, no. f 04178 and no. 124749. The fifth author was also partially supported by FWF Grant P29999.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darji, U.B., Elekes, M., Kalina, K. et al. The structure of random homeomorphisms. Isr. J. Math. 237, 75–113 (2020). https://doi.org/10.1007/s11856-020-2001-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2001-4

Navigation