Skip to main content
Log in

The finiteness of the genus of a finite-dimensional division algebra, and some generalizations

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove that the genus of a finite-dimensional division algebra is finite whenever the center is a finitely generated field of any characteristic. We also discuss potential applications of our method to other problems, including the finiteness of the genus of simple algebraic groups of type G2. These applications involve the double cosets of adele groups of algebraic groups over arbitrary finitely generated fields: while over number fields these double cosets are associated with the class numbers of algebraic groups and hence have been actively analyzed, similar questions over more general fields seem to come up for the first time. In the Appendix, we link thedoublecosets with Čech cohomology and indicate connections between certain finiteness properties involving double cosets (Condition (T)) and Bass’s finiteness conjecture in K-theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bass, K-theory and stable algebra, Institut des Hautes Études Scientifiques. Publications Mathématiques 22 (1964) 5–60.

    Article  MathSciNet  Google Scholar 

  2. H. Bass, Some problems in “classical” algebraic K-theory, in Algebraic K-Theory, II: Classical Algebraic K-Theory and Connections with Arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Mathematics, Vol. 342, Springer, Berlin-Heidelberg, 1973, pp. 3–73.

    Google Scholar 

  3. A. Borel, Some finiteness properties of adele groups over number fields, Institut des Hautes Etudes Scientifiques. Publications Mathématiques 16 (1963) 5–30.

    Article  MathSciNet  Google Scholar 

  4. N. Bourbaki, Commutative Algebra. Chapters 1–7, Elements of Mathematics, Springer, Berlin, 1989.

    MATH  Google Scholar 

  5. J.W.S. Cassels and A. Fröhlich (eds.), Algebraic Number Theory, London Mathematical Society, London, 2010.

    Google Scholar 

  6. V. I. Chernousov and V. I. Guletskiı, 2-torsion of the Brauer group of an elliptic curve: generators and relations, Documenta Mathematica Extra Volume (2001), 85–120.

  7. V. I. Chernousov, A. S. Rapinchuk and I. A. Rapinchuk, The genus of a division algebra and the unramified Brauer group, Bulletin of Mathematical Sciences 3 (2013) 211–240.

    Article  MathSciNet  Google Scholar 

  8. V. I. Chernousov, A. S. Rapinchuk and I. A. Rapinchuk, Division algebras with the same maximal subfields, Russian Mathematical Surveys 70 (2015) 83–112.

    Article  MathSciNet  Google Scholar 

  9. V. I. Chernousov, A. S. Rapinchuk and I. A. Rapinchuk, On the size of the genus of a division algebra, Trudy Matematicheskogo Instituta Imeni V. A. Steklova 292 (2016) 69–99.

    Article  MathSciNet  Google Scholar 

  10. V. I. Chernousov, A. S. Rapinchuk and I. A. Rapinchuk, On some finiteness properties of algebraic groups over finitely generated fields, Comptes Rendus Mathématique. Académie des Sciences. Paris 354 (2016) 869–873.

    Article  MathSciNet  Google Scholar 

  11. V. I. Chernousov, A. S. Rapinchuk and I. A. Rapinchuk, Spinor groups with good reduction, Compositio Mathematica 155 (2019) 484–527.

    Article  MathSciNet  Google Scholar 

  12. B. Farb and R. K. Dennis, Noncommutative Algebra, Graduate Texts in Mathematics, Vol. 144, Springer, New York, 1993.

    Book  Google Scholar 

  13. P. Gille and T. Szamuely, Central Simple Algebras and Galois Cohomology, Cambridge Studies in Advanced Mathematics, Vol. 101, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  14. G. Harder, Halbeinfache Gruppenschemata über Dedekindringen, Inventiones Mathematicae 4 (1967) 165–191.

    Article  MathSciNet  Google Scholar 

  15. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer, New York-Heidelberg, 1977.

    Book  Google Scholar 

  16. B. Kahn, Sur le groupe des classes d’un schema arithmetique, Bulletin de la Société Mathématique de France 134 (2006) 395–415.

    Article  MathSciNet  Google Scholar 

  17. T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, Vol. 189, Springer, New York, 1999.

    Book  Google Scholar 

  18. A. S. Merkurjev and A. A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 46 (1982) 1011–1046.

    MathSciNet  Google Scholar 

  19. J. S. Meyer, Division algebras with infinite genus, Bulletin of the London Mathematical Society 46 (2014) 463–468.

    Article  MathSciNet  Google Scholar 

  20. J. S. Milne, Lectures on Etale Cohomology, available at http://www.jmilne.org/math/CourseNotes/lec.html.

  21. Y. Ouyang, Introduction to Iwasawa Theory, available at https://www.math.unipd.it/~algant/iwasawa.pdf.

  22. V. P. Platonov and A. S. Rapinchuk, Algebraic Groups and Number Theory, Pure and Applied Mathematics, Vol. 139, Academic Press, Boston, MA, 1994.

    MATH  Google Scholar 

  23. A. S. Rapinchuk, Strong approximation for algebraic groups, in Thin Groups and Super-strong Approximation, Mathematical Sciences Research Institute Publications, Vol. 61, Cambridge University Press, Cambridge, 2014, pp. 269–298.

    MATH  Google Scholar 

  24. A. S. Rapinchuk and I. A. Rapinchuk, On division algebras having the same maximal subfields, Manuscripta Mathematica 132 (2010) 273–293.

    Article  MathSciNet  Google Scholar 

  25. A. S. Rapinchuk and I. A. Rapinchuk, Some finiteness results for algebraic groups and unramified cohomology over higher-dimensional fields, https://arxiv.org/abs/2002.01520.

  26. J. Rohlfs, Arithmetische definierte Gruppen mit Galois-operation, Inventiones Mathematicae 4 (1978) 185–205.

    Article  Google Scholar 

  27. L. H. Rowen, Ring Theory. Vols. I, II, Pure and Applied Mathematics, Vols. 127, 128, Academic Press, Boston, MA, 1988.

    Google Scholar 

  28. D. J. Saltman, Lectures on Division Algebras, CMBS Regional Conference Series in Mathematics, Vol. 94, American Mathematical Society, Providence, RI, 1999.

    Book  Google Scholar 

  29. P. Samuel, Anneaux gradués factoriels et modules réflexifs, Bulletin de la Société Mathématique de France 92 (1964) 237–249.

    Article  MathSciNet  Google Scholar 

  30. P. Samuel, À propos du théorème des unités, Bulletin des Sciences Mathématiques 90 (1966) 89–96.

    MathSciNet  MATH  Google Scholar 

  31. J.-P. Serre, Modules projectifs et espaces fibrés à fibre vectorielle, in Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, Secrétariat mathématique, Paris, 1958, Exposé 23.

    Google Scholar 

  32. J.-P. Serre, Local Fields, Graduate Texts in Mathematics, Vol. 67, Springer, New York-Berlin, 1979.

    Book  Google Scholar 

  33. J.-P. Serre, Local Algebra, Springer Monographs in Mathematics, Springer, Berlin, 2000.

    Book  Google Scholar 

  34. J.-P. Serre, Galois Cohomology, Springer Monographs in Mathematics, Springer, Berlin, 2002.

    MATH  Google Scholar 

  35. R. Sharifi, Iwasawa theory, available at http://math.ucla.edu/~sharifi/iwasawa.pdf.

  36. S. V. Tikhonov, Division algebras of prime degree with infinite genus, Trudy Matematicheskogo Instituta Imeni V. A. Steklova 292 (2016) 264–267.

    Article  MathSciNet  Google Scholar 

  37. S. V. Tikhonov, On genus of division algebra, Manuscripta Mathematica, https://doi.org/10.1007/s00229-020-01184-4.

  38. R. Treger, Reflexive modules, Journal of Algebra 54 (1978) 444–446.

    Article  MathSciNet  Google Scholar 

  39. A. R. Wadsworth, Valuation theory on finite dimensional division algebras, in Valuation Theory and its Applications. Vol. I (Saskatoon, SK, 1999), Fields Institute Communications, Vol. 32, American Mathematical Society, Providence, RI, 2002, pp. 385–449.

    Google Scholar 

  40. C. Weibel, The K-Book, Graduate Studies in Mathematics, Vol. 145, American Mathematical Society, Providence, RI, 2013.

    MATH  Google Scholar 

  41. A. Yamasaki, Strong approximation theorem for division algebras over R(X), Journal of the Mathematical Society of Japan 49 (1997) 455–467.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by an NSERC research grant. During the preparation of the paper, the second author visited Princeton University and the Institute for Advanced Study on a Simons Fellowship; the hospitality of both institutions and the generous support of the Simons Foundation are thankfully acknowledged. The third author was partially supported by an AMS-Simons Travel Grant. We would like to thank the anonymous referee for offering a number of corrections and valuable suggestions. We are also grateful to Louis Rowen for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei S. Rapinchuk.

Additional information

To Louis Rowen on the occasion of his retirement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernousov, V.I., Rapinchuk, A.S. & Rapinchuk, I.A. The finiteness of the genus of a finite-dimensional division algebra, and some generalizations. Isr. J. Math. 236, 747–799 (2020). https://doi.org/10.1007/s11856-020-1988-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-1988-x

Navigation