Skip to main content
Log in

Finite groups with large Chebotarev invariant

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

A subset {g1, …, gd} of a finite group G is said to invariably generate G if the set \({\rm{\{ }}g_1^{{x_1}}{\rm{,}} \ldots {\rm{,}}g_d^{{x_d}}{\rm{\}}}\) generates G for every choice of xiG. The Chebotarev invariant C(G) of G is the expected value of the random variable n that is minimal subject to the requirement that n randomly chosen elements of G invariably generate G. The authors recently showed that for each ϵ > 0, there exists a constant cϵ such that \(C(G) \le (1 + \epsilon)\sqrt {{\rm{|}}G{\rm{|}}} + {c_{\epsilon}}\). This bound is asymptotically best possible. In this paper we prove a partial converse: namely, for each α > 0 there exists an absolute constant δα such that if G is a finite group and \(C(G) > \alpha \sqrt {{\rm{|}}G{\rm{|}}}\), then G has a section X/Y such that \({\rm{|}}X/Y{\rm{|}} \ge {\delta _\alpha}\sqrt {{\rm{|}}G{\rm{|}}} \), and \(X/Y \cong {\mathbb{F}_q}\rtimes H\) for some prime power q, with \(H \le \mathbb{F}_q^\times \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ballester-Bolinches and L. M. Ezquerro, Classes of Finite Groups, Mathematics and its Applications, Vol. 584, Springer, Dordrecht, 2006.

    MATH  Google Scholar 

  2. J. D. Dixon, Random sets which invariably generate the symmetric group, Discrete Mathematics 105 (1992), 25–39.

    Article  MathSciNet  Google Scholar 

  3. R. Guralnick and C. Hoffman, The fírst cohomoiogy group and generation of simple groups, in Groups and Geometries (Siena, 1996), Trens in Mathematics, Birkhäuser, Basel, 1998, pp. 149–153.

    Google Scholar 

  4. D. F. Holt and C. M. Roney-Dougal, Minimal and random generation of permutation and matrix groups, Journal of Algebra 387 (2013), 195–223.

    Article  MathSciNet  Google Scholar 

  5. P. Jiménez-S eral and J. Lafuente, On complemented nonabelian chief factors of a finite group, Israel Journal of Mathematics 106 (1998), 177–188.

    Article  MathSciNet  Google Scholar 

  6. W. M. Kantor, A. Lubotzky and A. Shalev, Invariable generation and the Chebotarev invariant of a finite group, Journal of Algebra 348 (2011), 302–314.

    Article  MathSciNet  Google Scholar 

  7. W. Kimmerle, R. Lyons, R. Sandling and D. N. Teague, Composition factors from the group ring and Artin’s theorem on orders of simple groups, Proceedings of the London Mathematical Society 60 (1990), 89–122.

    Article  MathSciNet  Google Scholar 

  8. E. Kowalski and D. Zywina, The Chebotarev invariant of a finite group, Experimental Mathematics 21 (2012), 38–56.

    Article  MathSciNet  Google Scholar 

  9. V. Landazuri and G. M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, Journal of Algebra 32 (1974), 418–443.

    Article  MathSciNet  Google Scholar 

  10. M. Liebeck, L. Pyber and A. Shalev, On a conjecture of G. E. Wall, Journal of Algebra 317 (2007), 184–197.

    Article  MathSciNet  Google Scholar 

  11. A. Lucchini, The Chebotarev invariant of a finite group: A conjecture of Kowalski and Zywina, Proceedings of the American Mathematical Society 146 (2018), 4549–4962.

    Article  MathSciNet  Google Scholar 

  12. A. Lucchini, F. Menegazzo and M. Morigi, On the number of generators and composition length of finite linear groups, Journal of Algebra 243 (2001), 427–447.

    Article  MathSciNet  Google Scholar 

  13. A. Lucchini and G. Tracey, An upper bound on the Chebotarev invariant of a finite group, Israel Journal of Mathematics 219 (2017), 449–467.

    Article  MathSciNet  Google Scholar 

  14. G. Seitz and A. Zalesskii, On the minimal degrees of projective representations of the finite Chevalley groups II, Journal of Algebra 158 (1993), 233–243.

    Article  MathSciNet  Google Scholar 

  15. P. H. Tiep, Low dimensional representations of finite quasisimple groups, in Groups, Combinatorics & Geometry (Durham, 2001), World Scientific, River Edge, NJ, 2003, pp. 277–294.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lucchini.

Additional information

Research partially supported by MIUR-Italy via PRIN Group theory and applications and by the EPSRC standard grant EP/P0231QX/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucchini, A., Tracey, G. Finite groups with large Chebotarev invariant. Isr. J. Math. 235, 169–182 (2020). https://doi.org/10.1007/s11856-019-1953-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1953-8

Navigation