Abstract
A subset {g1, …, gd} of a finite group G is said to invariably generate G if the set \({\rm{\{ }}g_1^{{x_1}}{\rm{,}} \ldots {\rm{,}}g_d^{{x_d}}{\rm{\}}}\) generates G for every choice of xi ∈ G. The Chebotarev invariant C(G) of G is the expected value of the random variable n that is minimal subject to the requirement that n randomly chosen elements of G invariably generate G. The authors recently showed that for each ϵ > 0, there exists a constant cϵ such that \(C(G) \le (1 + \epsilon)\sqrt {{\rm{|}}G{\rm{|}}} + {c_{\epsilon}}\). This bound is asymptotically best possible. In this paper we prove a partial converse: namely, for each α > 0 there exists an absolute constant δα such that if G is a finite group and \(C(G) > \alpha \sqrt {{\rm{|}}G{\rm{|}}}\), then G has a section X/Y such that \({\rm{|}}X/Y{\rm{|}} \ge {\delta _\alpha}\sqrt {{\rm{|}}G{\rm{|}}} \), and \(X/Y \cong {\mathbb{F}_q}\rtimes H\) for some prime power q, with \(H \le \mathbb{F}_q^\times \).
Similar content being viewed by others
References
A. Ballester-Bolinches and L. M. Ezquerro, Classes of Finite Groups, Mathematics and its Applications, Vol. 584, Springer, Dordrecht, 2006.
J. D. Dixon, Random sets which invariably generate the symmetric group, Discrete Mathematics 105 (1992), 25–39.
R. Guralnick and C. Hoffman, The fírst cohomoiogy group and generation of simple groups, in Groups and Geometries (Siena, 1996), Trens in Mathematics, Birkhäuser, Basel, 1998, pp. 149–153.
D. F. Holt and C. M. Roney-Dougal, Minimal and random generation of permutation and matrix groups, Journal of Algebra 387 (2013), 195–223.
P. Jiménez-S eral and J. Lafuente, On complemented nonabelian chief factors of a finite group, Israel Journal of Mathematics 106 (1998), 177–188.
W. M. Kantor, A. Lubotzky and A. Shalev, Invariable generation and the Chebotarev invariant of a finite group, Journal of Algebra 348 (2011), 302–314.
W. Kimmerle, R. Lyons, R. Sandling and D. N. Teague, Composition factors from the group ring and Artin’s theorem on orders of simple groups, Proceedings of the London Mathematical Society 60 (1990), 89–122.
E. Kowalski and D. Zywina, The Chebotarev invariant of a finite group, Experimental Mathematics 21 (2012), 38–56.
V. Landazuri and G. M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, Journal of Algebra 32 (1974), 418–443.
M. Liebeck, L. Pyber and A. Shalev, On a conjecture of G. E. Wall, Journal of Algebra 317 (2007), 184–197.
A. Lucchini, The Chebotarev invariant of a finite group: A conjecture of Kowalski and Zywina, Proceedings of the American Mathematical Society 146 (2018), 4549–4962.
A. Lucchini, F. Menegazzo and M. Morigi, On the number of generators and composition length of finite linear groups, Journal of Algebra 243 (2001), 427–447.
A. Lucchini and G. Tracey, An upper bound on the Chebotarev invariant of a finite group, Israel Journal of Mathematics 219 (2017), 449–467.
G. Seitz and A. Zalesskii, On the minimal degrees of projective representations of the finite Chevalley groups II, Journal of Algebra 158 (1993), 233–243.
P. H. Tiep, Low dimensional representations of finite quasisimple groups, in Groups, Combinatorics & Geometry (Durham, 2001), World Scientific, River Edge, NJ, 2003, pp. 277–294.
Author information
Authors and Affiliations
Corresponding author
Additional information
Research partially supported by MIUR-Italy via PRIN Group theory and applications and by the EPSRC standard grant EP/P0231QX/1.
Rights and permissions
About this article
Cite this article
Lucchini, A., Tracey, G. Finite groups with large Chebotarev invariant. Isr. J. Math. 235, 169–182 (2020). https://doi.org/10.1007/s11856-019-1953-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11856-019-1953-8