Skip to main content
Log in

Gaussian bounds for noise correlation of resilient functions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Gaussian bounds on noise correlation of functions play an important role in hardness of approximation, in quantitative social choice theory and in testing. The author (2008) obtained sharp Gaussian bounds for the expected correlation of ℓ low influence functions f(1), …, f(ℓ) : Ωn → [0, 1], where the inputs to the functions are correlated via the n-fold tensor of distribution \({\cal P}\) on Ω in the following way: For each 1 ≤ in, the vector consisting of the i’-th inputs to the ℓ functions is sampled according to \({\cal P}\).

It is natural to ask if the condition of low influences can be relaxed to the condition that the function has vanishing Fourier coefficients. Here and g we further show that if f, g have a noisy inner product that exceeds the Gaussian bound, then the Fourier supports of their large coefficients intersect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Austrin, Towards sharp inapproximability for any 2-CSP, SIAM Journal on Computing 39 (2010), 2430–2463.

    Article  MathSciNet  Google Scholar 

  2. P. Austrin and J. Håstad, Randomly supported independence and resistance, SIAM Journal on Computing 40 (2011), 1–27.

    Article  MathSciNet  Google Scholar 

  3. P. Austrin and J. Håstad, On the usefulness of predicates, in 2012 IEEE 27th Conference on Computational Complexity—CCC 2012, IEEE Computer Society, Los Alamitos, CA, 2012, pp. 53–63.

    MATH  Google Scholar 

  4. P. Austrin and E. Mossel, Noise correlation bounds for uniform low degree functions, Arkiv för Matematik 51 (2013), 29–52.

    Article  MathSciNet  Google Scholar 

  5. N. Bansal and S. Khot, Inapproximability ofhypergraph vertex cover and applications to scheduling problems, in Automata, Languages and Programming. Part I, Lecture Notes in Computer Science, Vol. 6198, Springer, Berlin, 2010, pp. 250–261.

    Chapter  Google Scholar 

  6. E. Biais, Testing juntas nearly optimally, in STOC’09—Proceedings of the 2009 ACM international Symposium on Theory of Computing, ACM, New York, 2009, pp. 151–158.

    MATH  Google Scholar 

  7. C. Borell, Geometric bounds on the Ornstein-Uhlenbeck velocity process, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 70 (1985), 1–13.

    Article  MathSciNet  Google Scholar 

  8. S. O. Chan, Approximation resistance from pairwise-independent subgroups, Journal of the ACM 63 (2016), Article no. 27.

  9. X. Chen, A. De, R. A. Servedio and L.-Y. Tan, Boolean function monotonicity testing requires (almost) n1/2non-adaptive queries, in STOC’15—Proceedings of the 2015 ACM Symposium on Theory of Computing, ACM, New York, 2015, pp. 519–528.

    MATH  Google Scholar 

  10. X. Chen, R. A. Servedio and L.-Y. Tan, New algorithms and lower bounds for monotonicity testing, in 55th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2014, IEEE Computer Society, Los Alamitos, CA, 2014, pp. 286–295.

    Google Scholar 

  11. B. Chor, O. Goldreich, J. Hasted, J. Freidmann, S. Rudich and R. Smolensky, The bit extraction problem or t-resilient functions, in 26th Annual IEEE Symposium on Foundations of Computer Science—FOCS 1985, IEEE Computer Society, Los Alamitos, CA, 1985, pp. 396–407.

    Google Scholar 

  12. I. Diakonikolas, D. M. Kane and J. Nelson, Bounded independence fools degree-2 threshold functions, in 51st Annual IEEE Symposium on Foundations of Computer Science—FOCS 2010, IEEE Computer Society, Los Alamitos, CA, 2010, pp. 11–20. IEEE, 2010.

    Google Scholar 

  13. V. Feldman, V. Guruswami, P. Raghavendra and Y. Wu, Agnostic learning of monomials by halfspaces is hard, SIAM Journal on Computing 41 (2012), 1558–1590.

    Article  MathSciNet  Google Scholar 

  14. Y. Filmus, H. Hatami, S. Heilman, E. Mossel, R. O’Donnell, S. Sachdeva, A. Wan and K. Wimmer, Real analysis in computer science: A collection of open problems, https://doi.org/simons.berkeley.edu/sites/default/files/openprobsmerged.pdf.

  15. E. Friedgut, G. Kalai, N. Keller and N. Nisan, A quantitative version of the Gihbard Satterthwaite theorem for three alternatives, SIAM Journal on Computing 40 (2011), 934–952.

    Article  MathSciNet  Google Scholar 

  16. V. Guruswami, J. Håstad, R. Manokaran, P. Raghavendra and M. Charikar, Beating the random ordering is hard: Every ordering CSP is approximation resistant, SIAM Journal on Computing 40 (2011), 878–914.

    Article  MathSciNet  Google Scholar 

  17. V. Guruswami, R. Manokaran and P. Raghavendra, Beating the random ordering is hard: Inapproximability of maximum acyclic subgraph, in 49th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2008, IEEE Computer Society, Los Alamitos, CA, 2008, pp. 573–582.

    Google Scholar 

  18. V. Guruswami, P. Raghavendra, R. Saket and Y. Wu, Bypassing UGC from some optimal geometric inapproximability results, in Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, pp. 699–717.

  19. J. Håstad, Some optimal inapproximability results, in Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), ACM, New York, 1999, pp. 1–10.

    MATH  Google Scholar 

  20. J. Hązła, T. Holenstein and E. Mossel, Lower bounds on same-set inner product in correlated spaces. in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, Leibniz International Proceedings in Informatics, Vol. 34, Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern, 2016, Article no. 34.

    MATH  Google Scholar 

  21. M. Isaksson and E. Mossel, New maximally stable Gaussian partitions with discrete applications, Israel Journal of Mathematics 189 (2012), 347–396.

    Article  MathSciNet  Google Scholar 

  22. C. Jones, A noisy-inñuence regularity lemma for boolean functions, https://doi.org/abs/1610.06950.

  23. G. Kalai, A Fourier-theoretic perspective on the Condorcet paradox and Arrow’s theorem, Advances in Applied Mathematics 29 (2002), 412–426.

    Article  MathSciNet  Google Scholar 

  24. S. Khot, On the power of unique 2-prover 1-round games, in Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, ACM, New York, 2002, pp. 767–775.

    MATH  Google Scholar 

  25. S. Khot, G. Kindler, E. Mossel and R. O’Donnell, Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?, in 45th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2004, IEEE Computer Society, Los Alamitos, CA, 2004, pp. 146–154.

    MATH  Google Scholar 

  26. S. Khot, G. Kindler, E. Mossel and R. O’Donnell, Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?, S1AM Journal on Computing 37 (2007), 319–357.

    MathSciNet  MATH  Google Scholar 

  27. E. Mossel, Gaussian bounds for noise correlation of functions and tight analysis of long codes, in 49th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2008, IEEE Computer Society, Los Alamitos, CA, 2008, pp. 156–165.

    Google Scholar 

  28. E. Mossel, Gaussian bounds for noise correlation of functions, Geometric and Functional Analysis 19 (2010), 1713–1756.

    Article  MathSciNet  Google Scholar 

  29. E. Mossel, A quantitative arrow theorem, Probability Theory and Related Fields 154 (2012), 49–88.

    Article  MathSciNet  Google Scholar 

  30. E. Mossel, R. O’Donnell and K. Oleszkiewicz, Noise stability of functions with low influences: invariance and optimality (extended abstract), in 46th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2005, IEEE Computer Society, Los Alamitos, 2005, pp. 21–30.

    MATH  Google Scholar 

  31. E. Mossel, R. O’Donnell and K. Oleszkiewicz, Noise stability of functions with low influences: invariance and optimality, Annals of Mathematics 171 (2010), 295–341.

    Article  MathSciNet  Google Scholar 

  32. E. Mossel and O. Schramm, Representations of general functions using smooth functions, unpublished manuscript.

  33. I. Nourdin, G. Peccati and G. Reinert, Invariance principies for homogeneous sums: universality of Gaussian Wiener chaos, Annals of Probability 38 (2010), 1947–1985.

    Article  MathSciNet  Google Scholar 

  34. R. O’Donnell, R. Servedio, L.-Y. Tan and A. Wan, A regularity lemma for low noisyinfluences, unpublished manuscript.

  35. P. Raghavendra, Optimal algorithms and inapproximability results for every CSP?, in STOC’08—Proceedings of the 2008 ACM international Symposium on Theory of Computing, ACM, New York, 2008, pp. 245–254.

    MATH  Google Scholar 

  36. R. Rossignol, Noise-stability and central limit theorems for effective resistance of random electric networks, Annals of Probability 44 (2016), 1053–1106.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elchanan Mossel.

Additional information

Partially supported by NSF Grants CCF 1665252 and DMS-1737944 and DOD ONR grant N00014-17-1-2598.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mossel, E. Gaussian bounds for noise correlation of resilient functions. Isr. J. Math. 235, 111–137 (2020). https://doi.org/10.1007/s11856-019-1951-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1951-x

Navigation