Skip to main content
Log in

Isoperimetric inequality and Weitzenböck type formula for critical metrics of the volume

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We provide an isoperimetric inequality for critical metrics of the volume functional with nonnegative scalar curvature on compact manifolds with boundary. In addition, we establish a Weitzenböck type formula for critical metrics of the volume functional on four-dimensional manifolds. As an application, we obtain a classification result for such metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrozio, On static three-manifolds with positive scalar curvature, Journal of Differential Geometry 7 (2017), 1–45.

    Article  MathSciNet  Google Scholar 

  2. H. Baltazar and E. Ribeiro Jr., Remarks on critical metrics of the scalar curvature and volume functionals on compact manifolds with boundary, Pacific Journal of Mathematics 297 (2018), 29–45.

    Article  MathSciNet  Google Scholar 

  3. H. Baltazar and E. Ribeiro Jr., Critical metrics of the volume functional on manifolds with boundary, Proceedings of the American Mathematical Society 145 (2017), 3513–3523.

    Article  MathSciNet  Google Scholar 

  4. E. Barbosa, L. Lima and A. Freitas, The generalized Pohozaev-Schoen identity and some geometric applications, Communications in Analysis and Geometry, to appear, https://doi.org/abs/1607.03073.

  5. A. Barros, R. Diógenes and E. Ribeiro Jr., Bach-flat critical metrics of the volume functional on 4-dimensional manifolds with boundary, Journal of Geometric Analysis 25 (2015), 2698–2715.

    Article  MathSciNet  Google Scholar 

  6. A. Barros and A. Da Silva, Rigidity for critical metrics of the volume functional, Mathematiscge Nachrichten 292 (2019), 709–719.

    Article  MathSciNet  Google Scholar 

  7. R. Batista, R. Diógenes, M. Ranieri and E. Ribeiro Jr., Critical metrics of the volume functional on compact three-manifolds with smooth boundary, Journal of Geometric Analysis 27 (2017), 1530–1547.

    Article  MathSciNet  Google Scholar 

  8. M. Berger, Sur quelques variétés d’Einstein compactes, Annali di Matematica Pura ed Applicata 53 (1961), 89–95.

    Article  MathSciNet  Google Scholar 

  9. A. Besse, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 10, Springer-Verlag, Berlin-Heidelberg, 1987.

    Book  Google Scholar 

  10. W. Boucher, G. Gibbons and G. Horowitz, Uniqueness theorem for anti-de Sitter space-time, Physical Review. D 30 (1984), 2447–2451.

    Article  MathSciNet  Google Scholar 

  11. G. Catino, Integral pinched shrinking Ricci solitons, Advances in Mathematics 303 (2016), 279–294.

    Article  MathSciNet  Google Scholar 

  12. G. Catino and C. Mantegazza, The evolution of the Weyl tensor under the Ricci flow, Université de Grenoble. Annales de l’Institut Fourier 61 (2011), 1407–1435.

    Article  MathSciNet  Google Scholar 

  13. I. Chavel, Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, Vol. 115, Academic Press, New York, 1984.

    MATH  Google Scholar 

  14. J. Corvino, M. Eichmair and P. Miao, Deformation of scalar curvature and volume, Mathematische Annalen 357 (2013), 551–584.

    Article  MathSciNet  Google Scholar 

  15. A. Derdzinski, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Mathematica 49 (1983), 405–433.

    MathSciNet  MATH  Google Scholar 

  16. R. Gompf and A. Stipsicz, 4-Manifolds and Kirby Calculus, Graduate Studies in Mathematics, Vol. 20, American Mathematical Society, Providence, RI, 1999.

    Book  Google Scholar 

  17. R. Hamilton, Three-manifolds with positive Ricci curvature, Journal of Differential Geometry 17 (1982), 255–306.

    Article  MathSciNet  Google Scholar 

  18. J. Kim and J. Shin, Four-dimensional static and related critical spaces with harmonic curvature, Pacific Journal of Mathematics 295 (2018), 429–462.

    Article  MathSciNet  Google Scholar 

  19. M. Maz’ya, Lectures on isoperimetric and isocapacitary inequalities in the theory of Sobolev spaces, in Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Contemporary Mathematics, Vol. 338, American Mathematical Society, Providence, RI, 2003, pp. 307–340.

    Chapter  Google Scholar 

  20. P. Miao and L.-F. Tam, On the volume functional of compact manifolds with boundary with constant scalar curvature, Calculus of Variations and Partial Differential Equations 36 (2009), 141–171.

    Article  MathSciNet  Google Scholar 

  21. P. Miao and L.-F. Tam}, Einstein and conformally flat critical metrics of the volume functional, Transactions of the American Mathematical Society 363 (2011), 2907–2937.

    Article  MathSciNet  Google Scholar 

  22. A. Ros, The isoperimetric problem, in Global Theory of Minimal Surfaces, Clay Mathematics Proceedings, Vol. 2, American Mathematical Society, Providence, RI, 2005, pp. 175–209.

    Google Scholar 

  23. R. Schoen and S.-T. Yau, Lectures on Differential Geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, Vol. 1, International Press, Cambridge, MA, 1994.

    MATH  Google Scholar 

  24. Y. Shen, A note on Fischer-Marsden’s conjecture, Proceedings of the American Mathematical Society 125 (1997), 901–905.

    Article  MathSciNet  Google Scholar 

  25. P. Wu, A Weitzenbock formula for canonical metrics on four-manifolds, Transactions of the American Mathematical Society 369 (2017), 1079–1096.

    Article  MathSciNet  Google Scholar 

  26. W. Yuan, Volume comparison with respect to scalar curvature, https://doi.org/abs/1609.08849.

Download references

Acknowledgement

The authors want to thank the referee for his careful reading, relevant remarks and valuable suggestions. Moreover, the authors want to thank R. Batista and P. Wu for helpful conversations about this subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernani Ribeiro Jr..

Additional information

H. Baltazar was partially supported by CNPq/Brazil and FAPEPI/Brazil

E. Ribeiro Jr was partially supported by grants from CNPq/Brazil (Grant: 303091/2015-0), PRONEX-FUNCAP/CNPq/Brazil and CAPES/Brazil - Finance Code 001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltazar, H., Diógenes, R. & Ribeiro, E. Isoperimetric inequality and Weitzenböck type formula for critical metrics of the volume. Isr. J. Math. 234, 309–329 (2019). https://doi.org/10.1007/s11856-019-1930-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1930-2

Navigation