A. Blass, M. Hrusak and J. Verner, On strong P-points, Proceedings of the American Mathematical Society 141 (2013), 2875–2883.
Google Scholar
T. Bartošzyński and H. Judah, Set Theory, A K Peters, Wellesley, MA, 1995.
Book
MATH
Google Scholar
A. Blass, The Rudin-Keisler ordering of P-points, Transactions of the American Mathematical Society 179 (1973), 145–166.
Google Scholar
A. Blass, Combinatorial cardinal characteristics of the continuum, in Handbook of Set Theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 395–489.
MathSciNet
Article
MATH
Google Scholar
D. Booth, Ultrafilters on a countable set, Annals of Mathematical Logic 2 (1970/1971), 1–24.
MathSciNet
Article
MATH
Google Scholar
J. Brendle, Strolling through paradise, Fundamenta Mathematicae 148 (1995), 1–25.
MathSciNet
Article
MATH
Google Scholar
J. E. Baumgartner and A. D. Taylor, Partition theorems and ultrafilters, Transactions of the American Mathematical Society 241 (1978), 283–309.
Google Scholar
P. E. Cohen, P-points in random universes, Proceedings of the American Mathematical Society 74 (1979), 318–321.
MathSciNet
MATH
Google Scholar
J. Cichoń, A. Rosłanowski, J. Steprāns and B. Weglorz, Combinatorial properties of the ideal β2, Journal fo Symbolic Logic 58 (1993), 42–54.
MathSciNet
Article
MATH
Google Scholar
N. Dobrinen, Survey on the Tukey theory of ultrafilters, Zbornik Radova (Beograd) 17(25) (2015), 53–80.
MathSciNet
MATH
Google Scholar
A. Dow, P-filters and Cohen, Random, and Laver forcing, preprint
C. A. Di Prisco and J. M. Henle, Doughnuts, floating ordinals, square brackets, and ultraflitters, Journal of Symbolic Logic 65 (2000), 461–473.
MathSciNet
Article
MATH
Google Scholar
N. Dobrinen and S. Todorcevic, Tukey types of ultrafilters, Illinois Journal of Mathematics 55 (2011), 907–951.
MathSciNet
Article
MATH
Google Scholar
D. Fernandez-Breton, Generized pathways, unpublished note, https://arxiv.org/abs/1810.06093.
D. Fernandez-Breton and M. Hrusak, Corrigendum to “Gruff ultrafilters” [Topol. Appl. 210 (2016) 355-365], Topology and its Applications 231 (2017), 430–431.
MathSciNet
Article
MATH
Google Scholar
Z. Frolík, Sums of ultrafilters, Bulletin of the American Mathematical Society 73 (1967), 87–91.
MathSciNet
Article
MATH
Google Scholar
S. Geschke and S. Quickert, On Sacks forcing and the Sacks property, in Classical and New Paradigms of Computation and their Complexity Hierarchies, Trends in Logic-Studia Logica Library, Vol. 23, Kluwer, Dordrecht, 2004, pp. 95–139.
MathSciNet
Google Scholar
O. Guzman, P-points, mad families and cardinal invariants, Ph.D. thesis, Univer-sidad Nacional Autonoma de Mexico, 2017, https://doi.org/abs/1810.09680.
Google Scholar
L. J. Halbeisen, Combinatorial Set Theory, Springer Monographs in Mathematics, Springer, Cham, 2017.
Book
MATH
Google Scholar
J. R. Isbell, The category of cofinal types. II, Transactions of the American Mathematical Society 116 (1965), 394–416.
MathSciNet
Article
MATH
Google Scholar
J. Ketonen, On the existence of P-points in the Stone-Cech compactification of integers, Fundamenta Mathematicae 92 (1976), 91–94.
MathSciNet
Article
MATH
Google Scholar
P. Koszmider, A formalism for some class of forcing notions, Zeitschrift fur Math-ematische Logik und Grundlagen der Mathematik 38 (1992), 413–421.
MathSciNet
Article
MATH
Google Scholar
K. Kunen, Weak P-points in N*, in Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), Colloquia Mathematica Societatis Janos Bolyai, Vol. 23, North-Holland, Amsterdam-New York, 1980, pp. 741–749.
MATH
Google Scholar
A. R. D. Mathias, Surrealist landscape with figures (a survey of recent results in set theory), Periodica Mathematica Hungarica 10 (1979), 109–175.
MathSciNet
Article
MATH
Google Scholar
J. T. Moore, M. Hrusak and M. Džamonja, Parametrized ◊ principles, Transactions of the American Mathematical Society 356 (2004), 2281–2306.
MathSciNet
Article
MATH
Google Scholar
D. Raghavan and S. Shelah, On embedding certain partial orders into the P-points under Rudin-Keisler and Tukey reducibility, Transactions of the American Mathematical Society 369 (2017), 4433–4455.
MathSciNet
Article
MATH
Google Scholar
W. Rudin, Homogeneity problems in the theory of Cech compactifications, Duke Mathematical Journal 23 (1956), 409–419.
MathSciNet
Article
MATH
Google Scholar
S. Shelah, Proper and Improper Forcing, Perspectives in Mathematical Logic, Springer, Berlin, 1998.
Google Scholar
J. L. Verner, Lonely points revisited, Commentationes Mathematicae Universitatis Carolinae 54 (2013), 105–110.
MathSciNet
MATH
Google Scholar
J. van Mill, Sixteen topological types in βω - ω, Topology and its Applications 13 (1982), 43–57.
MathSciNet
Article
Google Scholar
E. L. Wimmers, The Shelah P-point independence theorem, Israel Journal of Mathematics 43 (1982), 28–48.
MathSciNet
Article
MATH
Google Scholar
W. Wohofsky, On the existence of p-points and other ultrafilters in the Stone- Cech-compactification of N, Master's thesis, Vienna University of Technology, 2008.
Google Scholar
J. Zapletal, Preserving P-points in definable forcing, Fundamenta Mathematicae 204 (2009), 145–154.
MathSciNet
Article
MATH
Google Scholar