Skip to main content
Log in

Quasi-Nash varieties and Schwartz functions on them

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce a new category called Quasi-Nash, unifying Nash manifolds and algebraic varieties. We define Schwartz functions, tempered functions and tempered distributions in this category. We show that the classical properties of these spaces, that hold on Nash manifolds and real affine algebraic varieties, hold in this category as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aizenbud and D. Gourevitch, Schwartz functions on Nash manifolds, International Mathematics Research Notices 5 (2008), paper no. 55.

  2. J. Bochnak, M. Coste and M. F. Roy, Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 36, Springer, Berlin, 1998.

    Book  MATH  Google Scholar 

  3. E. Bierstone and P. D. Milman, Semi-analytic and subanalytic sets, Institut des Hautes Études Sientifiques. Publications Mathématiques 67 (1988), 5–42.

    Article  MATH  Google Scholar 

  4. E. Bierstone and P. D. Milman, Geometric and differential properties of subanalytic sets, Annals of Mathematics 147 (1998), 731–785.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Bierstone, P. D. Milman and W. Pawlucki, Composite differential functions, Duke Mathematics Journal 83 (1996), 607–620.

    Article  MATH  Google Scholar 

  6. E. Bierstone, P. D. Milman and W. Pawlucki, Higher-order tangents and Fefferman’s paper on Whitney’s extension problem, Annals of Mathematics 164 (2006), 361–370.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. M. Constantine and T. H. Savits, A multivariate Faa Di Bruno formula with applications, Transactions of the American Mathematical Society 384 (1996), 503–520.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. du Cloux, Sur les représentations différentiables des groupes de Lie alégbriques, Annales Scientiques de l’École Normale Supérieure 24 (1991), 257–318.

    Article  MATH  Google Scholar 

  9. B. Elazar and A. Shaviv, Schwartz functions on real algebraic varieties, Canadian Journal of Mathematics 70 (2018), 1008–1037.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Fefferman, Whitney’s extension problem for C m, Annals of Mathematics 164 (2006), 313–359.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Shiota, Nash Manifolds, Lecture Notes in Mathematics, Vol. 1269, Springer, Berlin, 1987.

  12. F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York–London, 1967.

    MATH  Google Scholar 

  13. A. Tancredi, Some remarks on global real Nash sets, International Journal of Contemporary Mathematical Sciences 2 (2007), 1247–1256.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Tancredi and A. Tognoli, On the extension of Nash functions, Mathematische Annalen 288 (1990), 595–604.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boaz Elazar.

Additional information

Supported in part by ERC StG grant 637912 and ISF grant 249/17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elazar, B. Quasi-Nash varieties and Schwartz functions on them. Isr. J. Math. 232, 589–629 (2019). https://doi.org/10.1007/s11856-019-1877-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1877-3

Navigation