Skip to main content
Log in

Cone unrectifiable sets and non-differentiability of Lipschitz functions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We provide sufficient conditions for a set E ⊂ ℝn to be a non-universal differentiability set, i.e., to be contained in the set of points of non-differentiability of a real-valued Lipschitz function. These conditions are motivated by a description of the ideal generated by sets of non-differentiability of Lipschitz self-maps of ℝn given by Alberti, Csörnyei and Preiss, which eventually led to the result of Jones and Csörnyei that for every Lebesgue null set E in ℝn there is a Lipschitz map f: ℝn → ℝn not differentiable at any point of E, even though for n > 1 and for Lipschitz functions from ℝn to ℝ there exist Lebesgue null universal differentiability sets. Among other results, we show that the new class of Lebesgue null sets introduced here contains all uniformly purely unrectifiable sets and gives a quantified version of the result about non-differentiability in directions outside the decomposability bundle with respect to a Radon measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alberti, M. Csörnyei and D. Preiss, Structure of null sets in the plane and applications, in European Congress of Mathematics, European Mathematical Society, Zürich, 2005, pp. 3–22.

    Google Scholar 

  2. G. Alberti, M. Csörnyei and D. Preiss, Differentiability of Lipschitz functions, structure of null sets, and other problems, in Proceedings of the International Congress of Mathematicians. Vol. III, Hindustan Book Agency, New Delhi, 2010, pp. 1379–1394.

    Google Scholar 

  3. G. Alberti, M. Csörnyei and D. Preiss, Structure of null sets, differentiability of Lipschitz functions, and other problems, in preparation.

  4. G. Alberti and A. Marchese, On the differentiability of Lipschitz functions with respect to measures in the Euclidean space, Geometric and Functional Analysis 26 (2016), 1–66.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Azagra, J. Ferrera, F. López-Mesas and Y. Rangel, Smooth approximation of Lipschitz functions on Riemannian manifolds, Journal of Mathematical Analysis and Applications 326 (2007), 1370–1378.

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications, Vol. 48, American Mathematical Society, Providence, RI, 2000.

  7. J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geometric and Functional Analysis 9 (1999), 428–517.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Csörnyei and P. Jones, Product formulas for measures and applications to analysis and geometry, http://www.math.sunysb.edu/Videos/dfest/PDFs/38-Jones.pdf.

  9. M. Csörnyei, D. Preiss and J. Tišer, Lipschitz functions with unexpectedly large sets of nondifferentiability points, Abstract and Applied Analysis 4 (2005), 361–373.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. de Pauw and P. Huovinen, Points of ε-differentiability of Lipschitz functions fromn ton−1, Bulletin of the London Mathematical Society 34 (2002), 539–550.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. De Philippis and F. Rindler, On the structure of \({\cal A}\)-free measures and applications, Annals of Mathematics 184 (2016), 1017–1039.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Doré and O. Maleva, A universal differentiability set in Banach spaces with separable dual, Journal of Functional Analysis 261 (2011), 1674–1710.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Dymond and O. Maleva, Differentiability inside sets with Minkowski dimension one, Michigan Mathematical Journal 65 (2016), 613–636.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 1998.

  15. T. Fowler and D. Preiss, A simple proof of Zahorski’s description of non-differentiability sets of Lipschitz functions, Real Analysis Exchange 34 (2009), 127–138.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Hájek and M. Johanis, Smooth approximations, Journal of Functional Analysis 259 (2010), 561–582.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Lindenstrauss, D. Preiss and J. Tišer, Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces, Annals of Mathematics Studies, Vol. 179, Princeton University Press, Princeton, NJ, 2012.

  18. A. Marchese and A. Schioppa, Lipschitz functions with prescribed blowups at many points, arxiv:1612.05280.

  19. A. Merlo, Full non-differentiability of typical Lipschitz functions, in preparation.

  20. P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Annals of Mathematics 129 (1989), 1–60.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Pinamonti and G. Speight, A measure zero universal differentiability set in the Heisenberg group, Mathematische Annalen 368 (2017), 233–278.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Preiss, Differentiability of Lipschitz functions on Banach spaces Journal of Functional Analysis 91 (1990), 312–345.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Preiss, Gâteaux differentiability of cone-monotone and pointwise Lipschitz functions, Israel Journal of Mathematics 203 (2014), 501–534.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Preiss and G. Speight, Differentiability of Lipschitz functions in Lebesgue null sets, Inventiones Mathematicae 199 (2015), 517–559.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Preiss and J. Tišer, Points of non-differentiability of typical Lipschitz functions, Real Analysis Exchange 20 (1994/1995), 219–226.

    MathSciNet  MATH  Google Scholar 

  26. S. Saks, Theory of the Integral, Monografie Matematyczne, Vol. VII, Hafner, New York, 1937.

  27. Z. Zahorski, Sur l’ensemble des points de non-dérivabilité d’une fonction continue, Bulletin de la Société Mathématique de France 74 (1946), 147–178.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Maleva.

Additional information

The research leading to these results has received funding from the European Research Council / ERC Grant Agreement n. 291497. The first-named author also acknowledges the support of the EPSRC grant EP/N027531/1 and of the National Science Foundation under Grant No. DMS-1440140 while the author was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2017 semester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleva, O., Preiss, D. Cone unrectifiable sets and non-differentiability of Lipschitz functions. Isr. J. Math. 232, 75–108 (2019). https://doi.org/10.1007/s11856-019-1863-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1863-9

Navigation