Skip to main content
Log in

Optimal quantization for the Cantor distribution generated by infinite similutudes

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let P be a Borel probability measure on ℝ generated by an infinite system of similarity mappings {Sj : j ∈ ℕ} such that \(P=\Sigma_{j=1}^{\infty}\frac{1}{2^{j}}P\circ{S}_j^{-1}\), where for each j ∈ ℕ and x ∈ ℝ, \(S_j(x)=\frac{1}{3^j}x+1-\frac{1}{3^{j-1}}\). Then, the support of P is the dyadic Cantor set C generated by the similarity mappings f1, f2 : ℝ → ℝ such that f1(x) = 1/3x and f2(x) = 1/3x+ 2/3 for all x ∈ ℝ. In this paper, using the infinite system of similarity mappings {Sj : j ∈ ℕ} associated with the probability vector \((\frac{1}{2},\frac{1}{{{2^2}}},...)\), for all n ∈ ℕ, we determine the optimal sets of n-means and the nth quantization errors for the infinite self-similar measure P. The technique obtained in this paper can be utilized to determine the optimal sets of n-means and the nth quantization errors for more general infinite self-similar measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Du, V. Faber and M. Gunzburger, Centroidal Voronoi tessellations: applications and algorithms, SIAM Review 41 (1999), 637–676.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. P. Dettmann and M. K. Roychowdhury, Quantization for uniform distributions on equilateral triangles, Real Analysis Exchange 42 (2017), 149–166.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer Academic, Boston, MA, 1992.

    Book  MATH  Google Scholar 

  4. R. M. Gray, J. C. Kieffer and Y. Linde, Locally optimal block quantizer design, Information and Control 45 (1980), 178–198.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. György and T. Linder, On the structure of optimal entropy-constrained scalar quantizers, IEEE Transactions on Information Theory 48 (2002), 416–427.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Mathematics, Vol. 1730, Springer, Berlin, 2000.

  7. S. Graf and H. Luschgy, The quantization of the Cantor distribution, Mathematische Nachrichten 183 (1997), 113–133.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Gray and D. Neuhoff, Quantization, IEEE Transactions ob Information Theory 44 (1998), 2325–2383.

    Article  MATH  Google Scholar 

  9. P. Hanus, D. Mauldin and M. Urbański, Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems, Acta Mathematica Hungarica 96 (2002), 27–98.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Matsuura, H. Kurata and T. Tarpey, Optimal estimators of principal points for minimizing expected mean squared distance, Journal of Statistical Planning and Inference 167 (2015), 102–122.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. H. Riedi and B. B. Mandelbrot, Multifractal formalism for infinite multinomial measures, Advances in Applied Mathematics 16 (1995), 132–150.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. K. Roychowdhury, Quantization and centroidal Voronoi tessellations for probability measures on dyadic Cantor sets, Journal of Fractal Geometry 4 (2017), 127–146.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. K. Roychowdhury, Optimal quantizers for some absolutely continuous probability measures, Real Analysis Exchange 43 (2017), 105–136.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. K. Roychowdhury, Least upper bound of the exact formula for optimal quantization of some uniform Cantor distributions, Discrete and Continuous Dynamical Systems. Series A 38 (2018), 4555–4570.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Rosenblatt and M. K. Roychowdhury, Optimal quantization for piecewise uniform distributions, Uniform Distribution Theory 13 (2018), 23–55.

    Article  MathSciNet  Google Scholar 

  16. W. F. Sheppard, On the calculation of the most probable values of frequency-constants, for data arranged according to equidistant division of a scale, Proceedings of the London Mathematical Society 29 (1897), 353–380.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal Kanti Roychowdhury.

Additional information

The research of the author was supported by U.S. National Security Agency (NSA) Grant H98230-14-1-0320.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roychowdhury, M.K. Optimal quantization for the Cantor distribution generated by infinite similutudes. Isr. J. Math. 231, 437–466 (2019). https://doi.org/10.1007/s11856-019-1859-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1859-5

Navigation