Abstract
We show that the class of all Banach spaces which are isomorphic to c0 is a complete analytic set with respect to the Effros Borel structure of separable Banach spaces. The proof employs a recent Bourgain–Delbaen construction by Argyros, Gasparis and Motakis.
This is a preview of subscription content, access via your institution.
References
S. A. Argyros and I. Deliyanni, Examples of asymptotic ℓ1 Banach spaces, Transactions of the American Mathematical Society 349 (1997), 973–995.
S. A. Argyros, I. Gasparis and P. Motakis, On the structure of separable L ∞-spaces, Mathematika 62 (2016), 685–700.
S. A. Argyros and R. G. Haydon, A hereditarily indecomposable L ∞ -space that solves the scalar-plus-compact problem, Acta Mathematica 206 (2011), 1–54.
B. Bossard, A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces, Fundamenta Mathematicae 172 (2002), 117–152.
J. Bourgain, New Classes of Lp-spaces, Lecture Notes in Mathematics, Vol. 889, Springer, Berlin–New York, 1981.
J. Bourgain and F. Delbaen, A class of special L ∞ spaces, Acta Mathematica 145 (1980), 155–176.
B. M. Braga, On the complexity of some inevitable classes of separable Banach spaces, Journal of Mathematical Analysis and Applications 431 (2015), 682–701.
P. Dodos, Banach Spaces and Descriptive Set Theory: Selected Topics, Lecture Notes in Mathematics, Vol. 1993, Springer, Berlin, 2010.
M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucía, J. Pelant and V. Zizler, Functional Analysis and Infinite-dimensional Geometry, CMS Books in Mathematics, Vol. 8, Springer, New York, 2001.
T. Figiel and W. B. Johnson, A uniformly convex Banach space which contains no ℓp, Compositio Mathematica 29 (1974), 179–190.
V. P. Fonf, One property of Lindenstrauss-Phelps spaces, Functional Analysis and its Applications 13 (1979), 66–67.
G. Ghawadrah, Non-isomorphic complemented subspaces of the reflexive Orlicz function spaces LF[0, 1], Proceedings of the American Mathematical Society 144 (2016), 285–299.
G. Ghawadrah, The descriptive complexity of the family of Banach spaces with the bounded approximation property, Houston Journal of Mathematics 43 (2017), 395–401.
G. Godefroy, Analytic sets of Banach spaces, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 104 (2010), 365–374.
G. Godefroy, The complexity of the isomorphism class of some Banach spaces, Journal of Nonlinear and Convex Analysis 18 (2017), 231–240.
G. Godefroy, The isomorphism classes of ℓp are Borel, Houston Journal of Mathematics 43 (2017), 947–951.
G. Godefroy, N. J. Kalton and G. Lancien, Szlenk indices and uniform homeomorphisms, Transactions of the American Mathematical Society 353 (2001), 3895–3918.
G. Godefroy and J. Saint-Raymond, Descriptive complexity of some isomorphic classes of Banach spaces, Journal of Functional Analysis 275 (2018), 1008–1022.
W. B. Johnson and M. Zippin, On subspaces of quotients of \((\Sigma{G_n})_{{\ell}_{p}}\) and \((\Sigma{G_n})_{c_0}\), Israel Journal of Mathematics 13 (1972), 311–316.
A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts inMathematics, Vol. 156, Springer, New York, 1995.
O. Kurka, Tsirelson-like spaces and complexity of classes of Banach spaces, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matatemáticas 112 (2018), 1101–1123.
J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92, Springer, Berlin–New York, 1977.
V. Pták, A combinatorial theorem on systems of inequalities and its application to analysis, Czechoslovak Mathematical Journal 9 (1959), 629–630.
H. P. Rosenthal, A characterization of c0 and some remarks concerning the Grothendieck property, in Texas Functional Analysis Seminar 1982–1983 (Austin, TX), Longhorn Notes, University of Texas Press, Austin, TX, 1983, pp. 95–108.
B. S. Tsirelson, Not every Banach space contains an imbedding of ℓp or c 0, Functional Analysis and its Applications 8 (1974), 138–141.
Acknowledgment
The author is grateful to Gilles Godefroy for useful remarks on the topic and for hospitality during a visit at the Institut de Mathématiques de Jussieu. The author thanks Valentin Ferenczi and the anonymous referee for suggestions that helped to improve this work.
Author information
Authors and Affiliations
Corresponding author
Additional information
The author was supported by grant GAČR 17-00941S and by RVO: 67985840.
Rights and permissions
About this article
Cite this article
Kurka, O. The isomorphism class of C0 is not Borel. Isr. J. Math. 231, 243–268 (2019). https://doi.org/10.1007/s11856-019-1851-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11856-019-1851-0