Skip to main content
Log in

Stability and sparsity in sets of natural numbers

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Given a set A ⊆ ℕ, we consider the relationship between stability of the structure (ℤ, + , 0,A) and sparsity of the set A. We first show that a strong enough sparsity assumption on A yields stability of (ℤ, +, 0, A). Specifically, if there is a function f: A → ℝ+ such that supa∈A |af(a)| < ∞ and {\(\frac{s}{t}:s,t \in f(A) \), ts} is closed and discrete, then (ℤ, +, 0, A) is superstable (of U-rank ω if A is infinite). Such sets include examples considered by Palacín and Sklinos [19] and Poizat [23], many classical linear recurrence sequences (e.g., the Fibonaccci numbers), and any set in which the limit of ratios of consecutive elements diverges. Finally, we consider sparsity conclusions on sets A ⊆ N, which follow from model theoretic assumptions on (ℤ, +, 0, A). We use a result of Erdős, Nathanson and Sárközy [8] to show that if (ℤ, +, 0, A) does not define the ordering on ℤ, then the lower asymptotic density of any finitary sumset of A is zero. Finally, in a theorem communicated to us by Goldbring, we use a result of Jin [11] to show that if (ℤ, +, 0,A) is stable, then the upper Banach density of any finitary sumset of A is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Baizhanov and J. T. Baldwin, Local homogeneity, Journal of Symbolic Logic 69 (2004), 1243–1260.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Baudisch, Magidor–Malitz quantifiers in modules, Journal of Symbolic Logic 49 (1984), 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  3. O. Belegradek, Y. Peterzil and F. Wagner, Quasi-o-minimal structures, Journal of Symbolic Logic 65 (2000), 1115–1132.

    Article  MathSciNet  MATH  Google Scholar 

  4. M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse and J.-P. Schreiber, Pisot and Salem Numbers, Birkhäuser, Basel, 1992.

    Book  MATH  Google Scholar 

  5. E. Casanovas and M. Ziegler, Stable theories with a new predicate, Journal of Symbolic Logic 66 (2001), 1127–1140.

    Article  MathSciNet  MATH  Google Scholar 

  6. Z. Chatzidakis and A. Pillay, Generic structures and simple theories, Annals of Pure and Applied Logic 95 (1998), 71–92.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Conant, Multiplicative structure in stable expansions of the group of integers, Illinois Journal of Mathematics, to appear, arXiv:1704.00105.

  8. P. Erdős, M. B. Nathanson and A. Sárközy, Sumsets containing infinite arithmetic progressions, Journal of Number Theory 28 (1988), 159–166.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Mathematical Surveys and Monographs, Vol. 104, American Mathematical Society, Providence, RI, 2003.

  10. D. Hilbert, Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl nter Potenzen (Waringsches Problem), Mathematische Annalen 67 (1909), 281–300.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Jin, Nonstandard methods for upper Banach density problems, Journal of Number Theory 91 (2001), 20–38.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Kamke, Verallgemeinerungen des Waring–Hilbertschen Satzes, Mathematische Annalen 83 (1921), 85–112.

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Kaplan and S. Shelah, Decidability and classification of the theory of integers with primes, Journal of Symbolic Logic 82 (2017), 1041–1050.

    Article  MathSciNet  MATH  Google Scholar 

  14. Q. Lambotte and F. Point, On expansions of (Z,+, 0), arXiv:1702.04795.

  15. D. Marker, Model Theory, Graduate Texts in Mathematics, Vol. 217, Springer-Verlag, New York, 2002.

  16. E. P. Miles, Jr., Generalized Fibonacci numbers and associated matrices, AmericanMathematical Monthly 67 (1960), 745–752.

    Google Scholar 

  17. J. C. M. Nash and M. B. Nathanson, Cofinite subsets of asymptotic bases for the positive integers, Journal of Number Theory 20 (1985), 363–372.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. B. Nathanson, Additive Number Theory. The Classical Bases, Graduate Texts in Mathematics, Vol. 164, Springer-Verlag, New York, 1996.

  19. D. Palacín and R. Sklinos, Superstable expansions of free abelian groups, Notre Dame Journal of Formal Logic 59 (2018), 157–169.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Pillay, Geometric Stability Theory, Oxford Logic Guides, Vol. 32, The Clarendon Press, Oxford University Press, New York, 1996.

  21. B. Poizat, A Course in Model Theory, Universitext, Springer-Verlag, New York, 2000.

    Book  Google Scholar 

  22. B. Poizat, Stable Groups, Mathematical Surveys and Monographs, Vol. 87, American Mathematical Society, Providence, RI, 2001.

  23. B. Poizat, Supergénérix, Journal of Algebra 404 (2014), 240–270.

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Poonen, Representing numbers in a non-integer base with few (but possibly negative) nonzero digits, MathOverflow, http://mathoverflow.net/q/12177 (version: 2010-01-18).

    Google Scholar 

  25. M. Prest, Model theory and modules, in Handbook of Algebra, Vol. 3, North-Holland, Amsterdam, 2003, pp. 227–253.

    Google Scholar 

  26. W. M. Schmidt, Linear recurrence sequences, in Diophantine approximation (Cetraro, 2000), Lecture Notes in Mathematics, Vol. 1819, Springer, Berlin, 2003, pp. 171–247.

  27. L. Schnirelmann, Über additive Eigenschaften von Zahlen, Mathematische Annalen 107 (1933), 649–690.

    MathSciNet  Google Scholar 

  28. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27 (1975), 199–245.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Conant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conant, G. Stability and sparsity in sets of natural numbers. Isr. J. Math. 230, 471–508 (2019). https://doi.org/10.1007/s11856-019-1835-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1835-0

Navigation