Skip to main content
Log in

Quasi-random multilinear polynomials

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider multilinear Littlewood polynomials, polynomials in n variables in which a specified set of monomials U have ±1 coefficients, and all other coefficients are 0. We provide upper and lower bounds (which are close for U of degree below log n) on the minimum, over polynomials h consistent with U, of the maximum of |h| over ±1 assignments to the variables. (This is a variant of a question posed by Erdős regarding the maximum on the unit disk of univariate polynomials of given degree with unit coefficients.) We outline connections to the theory of quasi-random graphs and hypergraphs, and to statistical mechanics models. Our methods rely on the analysis of the Gale–Berlekamp game; on the constructive side of the generic chaining method; on a Khintchine-type inequality for polynomials of degree greater than 1; and on Bernstein’s approximation theory inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Berger, The fourth moment method, SIAM Journal on Computing 26 (1997), 1188–1207.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Bonami, Étude des coefficients Fourier des fonctions de Lp(G), Université de Grenoble. Annales de l’Institut Fourier 20 (1970), 335–402.

    Google Scholar 

  3. P. Borwein, Computational Excursions in Analysis and Number Theory, CMS Books in Mathematics, Vol. 10, Springer-Verlag, New York, 2002.

  4. T. A. Brown and J. H. Spencer, Minimization of ±1 matrices under line shifts, Colloquium Mathematicum 23 (1971), 165–171.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Carbery and J. Wright, Distributional and L q norm inequalities for polynomials over convex bodies inn, Mathematical Research Letters 8 (2001), 233–248.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Carlet and S. Mesnager, Four decades of research on bent functions, Designs, Codes and Cryptography 73 (2016), 5–50.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. M. Childs, R. Kothari, M. Ozols and M. Roetteler, Easy and hard functions for the boolean hidden shift problem, in 8th Conference on the Theory of Quantum Computation, Communication and Cryptography, Leibniz International Proceedings in Informatics, Vol. 22, Schloss Dagstuhl Leibniz-Zentrum fuer Informatik, Wadern, 2013, pp. 50–79.

    MATH  Google Scholar 

  8. F. R.K. Chung, Quasi-random classes of hypergraphs, Random Structures & Algorithms 1 (1990), 363–382.

    Article  MathSciNet  Google Scholar 

  9. F. R. K. Chung and R. L. Graham, Quasi-random hypergraphs, Random Structures & Algorithms 1 (1990), 105–124.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. R. K. Chung, R. L. Graham and R. M. Wilson, Quasi-random graphs, Combinatorica 9 (1989), 345–362.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Conlon, H. Hàn, Y. Person and M. Schacht, Weak quasi-randomness for uniform hypergraphs, Random Structures & Algorithms 40 (2012), 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. F. Dillon, A survey of bent functions, NSA Technical Journal Special Issue, 1972, 191–215.

    Google Scholar 

  13. J. F. Dillon, Elementary Hadamard difference sets, PhD thesis, University of Maryland, College Park, 1974.

    MATH  Google Scholar 

  14. I. Dinur, E. Friedgut, G. Kindler and R. O’Donnell, On the Fourier tails of bounded functions over the discrete cube, Israel Journal of Mathematics 160 (2007), 389–412.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Erdélyi, Polynomials with Littlewood-type coefficient constraints, in Approximation Theory X, (St. Louis, MO, 2001), Innovations in Applied Mathematics, Vanderbilt University Press, Nashville, TN, 2002, pp. 153–196.

    MATH  Google Scholar 

  16. P. Erdös, Some unsolved problems, Michigan Mathematical Journal 4 (1957), 291–300.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Erdös, An inequality for the maximum of trigonometric polynomials, Annales Polonici Mathematici 12 (1962), 151–154.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. C. Fishburn and N. J. A. Sloane, The solution to Berlekamp’s switching game, Discrete Mathematics 74 (1989), 263–290.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Frankl, V. Rödl and R. M. Wilson, The number of submatrices of a given type in a Hadamard matrix and related results, Journal of Combinatorial Theory, Series B 44 (1988), 317–328.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Gordon and H. S. Witsenhausen, On extensions of the Gale–Berlekamp switching problem and constants of p-spaces, Israel Journal of Mathematics 11 (1972), 216–229.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Haviland and A. G. Thomason, Pseudo-random hypergraphs, Discrete Mathematics 75 (1989), 255–278.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Jedwab, D. J. Katz and K.-U. Schmidt, Littlewood polynomials with small L4 norm, Advances in Mathematics 59 (2013), 3210–3214.

    Google Scholar 

  23. J.-P. Kahane, Sur les sommes vectorielles ±un, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 259 (1964), 2577–2580.

    MATH  Google Scholar 

  24. J.-P. Kahane, Sur les polynômes á coefficients unimodulaires, Bulletin of the London Mathematical Society 12 (1980), 321–342.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Khintchine, Über dyadische Brüche, Mathematische Zeitschrift 18 (1923), 109–116.

    Article  MathSciNet  Google Scholar 

  26. Y. Kohayakawa, V. Rödl, and J. Skokan, Hypergraphs, quasi-randomness, and conditions for regularity, Journal of Combinatorial Theory, Series A 97 (2002), 307–352.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Krawtchouk, Sur une généralisation des polynômes d’Hermite, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 189 (1929), 620–622.

    MATH  Google Scholar 

  28. M. Krivelevich and B. Sudakov, Pseudo-random graphs, in More Sets, Graphs and Numbers, Bolyai Society Mathematical Studies, Vol. 15, Springer, Berlin, 2006, pp. 199–262.

    Google Scholar 

  29. R. Latala and K. Oleszkiewicz, On the best constant in the Khintchine–Kahane inequality, Studia Mathematica 109 (1994), 101–104.

    MathSciNet  MATH  Google Scholar 

  30. V. I. Levenshtein, Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces, IEEE Transactions on Information Theory 41 (1995), 1303–1321.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. E. Littlewood, On polynomials±zm andeαmizm, z = eθi, Journal of the London Mathematical Society 41 (1966), 367–376, 1966. (Reprinted in The Collected Papers of J. E. Littlewood, Vol. 2, Oxford University Press, New York, 1982, pp. 1423-1433).

    Google Scholar 

  32. J. E. Littlewood, Some Problems in Real and Complex Analysis, Heath Mathematical Monographs, D. C. Heath and Co. Raytheon Education, Lexington, MA, 1968.

    MATH  Google Scholar 

  33. L. Lovász, Large Networks and Graph Limits, American Mathematical Society Colloquium Publications, Vol. 60, American Mathematical Society, Providence, RI, 2012.

  34. R. Meka, O. Nguyen and V. Vu, Anti-concentration for polynomials of independent random variables, Theory of Computing 12 (2016), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  35. P.-A. Meyer, Martingales and Stochastic Integrals. I, Lecture Notes in Mathematics, Vol. 284, Springer-Verlag, Berlin–New York, 1972.

  36. I. P. Natanson, Constructive Theory of Functions. Vol. 1, Frederick Ungar Publishing, New York 1964.

    Google Scholar 

  37. R. O’Donnell, Analysis of Boolean Functions, Cambridge University Press, New York, 2014.

    Book  MATH  Google Scholar 

  38. R. E. A. C. Paley and A. Zygmund, A note on analytic functions in the unit circle, Proceedings of the Cambridge Philosophical Society 28 (1932), 266–272.

    Article  Google Scholar 

  39. R. K. Pathria and P. D. Beale, Statistical Mechanics, Academic Press, New York, 2011.

    MATH  Google Scholar 

  40. H. Queffelec and B. Saffari, On Bernstein’s inequality and Kahane’s ultraflat polynomials, Journal of Fourier Analysis and Applications 2 (1996), 519–582.

    Article  MathSciNet  MATH  Google Scholar 

  41. V. Rödl, On the universality of graphs with uniformly distributed edges, Discrete Mathematics 59 (1986), 125–134.

    Article  MathSciNet  MATH  Google Scholar 

  42. O. S. Rothaus, On “bent” functions, Journal of Combinatorial Theory. Series A 20 (1976), 300–305.

    Article  MathSciNet  MATH  Google Scholar 

  43. W. Rudin, Some theorems on Fourier coefficients, Proceedings of the American Mathematical Society 10 (1959), 855–859.

    Article  MathSciNet  MATH  Google Scholar 

  44. K.-U. Schmidt, An extremal problem for polynomials, Comptes Rendus Mathématique. Académie des Sciences 352 (2014), 95–97.

    Article  MathSciNet  MATH  Google Scholar 

  45. H. S. Shapiro, Extremal problems for polynomials and power series, Master’s thesis, Massachusetts Institute of Technology, 1951.

    Google Scholar 

  46. M. Simonovits and V. T. Sós, Szemerédi’s partition and quasirandomness, Random Structures & Algorithms 2 (1991), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  47. A. Ta-Shma, Explicit, almost optimal, epsilon-balanced codes, in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, ACM, New York, 2017, pp. 238–251.

    MATH  Google Scholar 

  48. M. Talagrand, Majorizing measures: the generic chaining, Annals of Probability 24 (1996), 1049–1103.

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Thomason, Pseudorandom graphs, in Random Graphs’ 85 (Poznań, 1985), North-Holland Mathematics Studies, Vol. 144, North-Holland, Amsterdam, 1987, pp. 307–331.

  50. A. Thomason, Random graphs, strongly regular graphs and pseudo-random graphs, in Surveys in Combinatorics 1987 (New Cross, 1987), London Mathematical Society Lecture Note Series, Vol. 123, Cambridge University Press, Cambridge, 1987, pp. 173–195.

    MATH  Google Scholar 

  51. N. Tokareva, Bent Functions: Results and Applications to Cryptography, Academic Press, Amsterdam, 2015.

    Book  MATH  Google Scholar 

  52. E. P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Annals of Mathematics, 62 (1955), 548–564.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard J. Schulman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalai, G., Schulman, L.J. Quasi-random multilinear polynomials. Isr. J. Math. 230, 195–211 (2019). https://doi.org/10.1007/s11856-018-1821-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1821-y

Navigation