Skip to main content
Log in

Mean dimension of full shifts

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let K be a finite-dimensional compact metric space and K the full shift on the alphabet K. We prove that its mean dimension is given by dimK or dimK−1 depending on the “type” of K. We propose a problem which seems interesting from the view point of infinite-dimensional topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Boltyanskiĭ, An example of a two-dimensional compactum whose topological square is three-dimensional, Doklady Akademii Nauk SSSR 67 (1949) 597–599.

    MathSciNet  Google Scholar 

  2. A. N. Dranishnikov, Cohomological dimension theory of compact metric spaces, Topology Atlas Invited Contributions 6 (2001), 61 pp., https://doi.org/at.yorku.ca/t/a/i/c/43.htm.

    Google Scholar 

  3. J. Dydak and J. Walsh, Infinite-dimensional compacta having cohomological dimension two: an application of the Sullivan conjecture, Topology 32 (1993) 93–104.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Engelking, Dimension Theory, North-Holland Mathematical Library, Vol. 19, North-Holland, Amsterdam–Oxford–New York; PWN, Warsaw, 1978.

  5. M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps: I, Mathematical Physics, Analysis and Geometry 2 (1999) 323–415.

    MathSciNet  MATH  Google Scholar 

  6. Y. Gutman, Embedding Zk-actions in cubical shifts and Zk-symbolic extensions, Ergodic Theory and Dynamical Systems 31 (2011) 383–403.

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Gutman, E. Lindenstrauss and M. Tsukamoto, Mean dimension of Zk-actions, Geometric and Functional Analysis 26 (2016), 778–817.

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Gutman and M. Tsukamoto, Embedding minimal dynamical systems into Hilbert cubes, arXiv:1511.01802.

  9. D. W. Henderson, An infinite-dimensional compactum with no positive-dimensional compact subsets—a simpler construction, American Journal of Mathematics 89 (1967), 105–121.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Institut des Hautes Études Scientifiques. Publications Mathématiques 89 (1999), 227–262.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel Journal of Mathematics 115 (2000), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Meyerovitch and M. Tsukamoto, Expansive multiparameter actions and mean dimension, Transactions of the American Mathematical Society, to appear, arXiv:1710.09647.

  13. K. Nagami, Dimension Theory, Pure and Applied Mathematics, Vol. 37, Academic Press, New York, 1970.

  14. L. S. Pontryagin, Sur une hypothese fondamentale de la dimension, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 190 (1930), 1105–1107.

    MATH  Google Scholar 

  15. L. R. Rubin, R. M. Shori and J. J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, General Topology and its Applications 10 (1979), 93–102.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York–Toronto,ON–London, 1966.

    MATH  Google Scholar 

  17. J. J. Walsh, Infinite-dimensional compacta containing no n-dimensional (n ≥ 1) subsets, Topology 18 (1979), 91–95.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Tsukamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukamoto, M. Mean dimension of full shifts. Isr. J. Math. 230, 183–193 (2019). https://doi.org/10.1007/s11856-018-1813-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1813-y

Navigation