Skip to main content
Log in

Continuity of Lyapunov exponents in the C0 topology

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove that the Bochi–Mañé theorem is false, in general, for linear cocycles over non-invertible maps: there are C0-open subsets of linear cocycles that are not uniformly hyperbolic and yet have Lyapunov exponents bounded from zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Avila, J. Santamaria and M. Viana, Holonomy invariance: rough regularity and applications to Lyapunov exponents, Astérisque 358 (2013), 13–74, 2013.

    MathSciNet  MATH  Google Scholar 

  2. A. Avila and M. Viana, Extremal Lyapunov exponents: an invariance principle and applications, Inventiones Mathematicae 181 (2010), 115–189.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Backes, A. Brown and C. Butler, Continuity of Lyapunov exponents for cocycles with invariant holonomies, Journal of Modern Dynamics 12 (2018), 223–260.

    Article  MATH  Google Scholar 

  4. J. Bochi, Genericity of zero Lyapunov exponents. PhD thesis, IMPA, 2000, preprint, www.preprint.impa.br.

    Google Scholar 

  5. J. Bochi, Genericity of zero Lyapunov exponents, Ergodic Theory and Dynamical Systems 22 (2002), 1667–1696.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bochi, C1-generic symplectic diffeomorphisms: partial hyperbolicity and zero centre Lyapunov exponents, Journal of the Institute of Mathematics of Jussieu 9 (2010), 49–93.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic maps, Annals of Mathematics 161 (2005), 1423–1485.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Encyclopaedia of Mathematical Sciences, Vol. 102, Springer-Verlag, Berlin, 2005.

  9. C. Bonatti, X. Gómez-Mont and M. Viana, Généricité d’exposants de Lyapunov nonnuls pour des produits déterministes de matrices, Annales de l’Institut Henri Poincaré. Analyse Non Linéaire 20 (2003), 579–624.

    Google Scholar 

  10. C. Bonatti and M. Viana, Lyapunov exponents with multiplicity 1 for deterministic products of matrices, Ergodic Theory and Dynamical Systems 24 (2004), 1295–1330.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer Verlag, Berlin–New York, 1975.

  12. C. Butler, Discontinuity of Lyapunov exponents near fiber bunched cocycles, Ergodic Theory and Dynamical Systems 38 (2018), 523–539.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Duarte and S. Klein, Lyapunov Exponents of Linear Cocycles, Atlantis Studies in Dynamical Systems, Vol. 3, Atlantis Press, Paris, 2016.

  14. H. Furstenberg, Non-commuting random products, Transactions of the American Mathematical Society 108 (1963), 377–428.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Furstenberg and H. Kesten, Products of random matrices, Annals of Mathematical Statistics 31 (1960), 457–469.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Herman, Une méthode nouvelle pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2, Commentarii Mathematici Helvetici 58 (1983), 453–502.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Kalinin, Livšic theorem for matrix cocycles, Annals of Mathematics 173 (2011), 1025–1042.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Kingman, The ergodic theory of subadditive stochastic processes, Journal of the Royal Statistical Society 30 (1968), 499–510.

    MathSciNet  MATH  Google Scholar 

  19. O. Knill, The upper Lyapunov exponent of SL(2,R) cocycles: discontinuity and the problem of positivity, in Lyapunov Exponents (Oberwolfach, 1990), Lecture Notes in Mathematics, Vol. 1486, Springer-Verlag, Berlin, 1991, pp. 86–97.

  20. F. Ledrappier, Propriétés ergodiques des mesures de Sinäı, Institut des Hautes Études Scientifiques. Publications Mathématiques 59 (1984), 163–188.

    Article  MATH  Google Scholar 

  21. F. Ledrappier, Positivity of the exponent for stationary sequences of matrices, in Lyapunov Exponents (Bremen, 1984), Lecture Notes in Mathematics, Vol. 1186, Springer-Verlag, Berlin, 1986, pp. 56–73.

    MathSciNet  MATH  Google Scholar 

  22. F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Annals of Mathematics 122 (1985), 509–539.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Ma˜né, Oseledec’s theorem from the generic viewpoint, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Warsaw, 1983), PWN, Warsaw, 1984, pp. 1269–1276.

    Google Scholar 

  24. V. I. Oseledets, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Transactions of the Moscow Mathematical Society 19 (1968), 197–231.

    MATH  Google Scholar 

  25. V. A. Rokhlin, Lectures on the entropy theory of measure-preserving transformations, Russian Mathematical Surveys 22(1967), 1–52; translated from Uspekhi Matematičeskih Nauk 22 (1967), 3–56.

    MATH  Google Scholar 

  26. A. Tahzibi and J. Yang, Invariance principle and rigidity of high entropy measures, Transactions of the American Mathematical Society, to appear.

  27. M. Viana, Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents, Annals of Mathematics 167 (2008), 643–680.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Viana, Lectures on Lyapunov Exponents, Cambridge Studies in Advanced Mathematics, Vol. 145, Cambridge University Press, Cambridge, 2014.

  29. M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge Studies in Advanced Mathematics, Vol. 151, Cambridge University Press, Cambridge, 2015.

  30. J. Yang, Entropy along expanding foliations, arXiv:1601.05504.

  31. L.-S. Young, Some open sets of nonuniformly hyperbolic cocycles, Ergodic Theory and Dynamical Systems 13 (1993), 409–415.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Viana.

Additional information

Partially supported by Fondation Louis D.—Institut de France (project coordinated by M. Viana), CNPq and FAPERJ

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viana, M., Yang, J. Continuity of Lyapunov exponents in the C0 topology. Isr. J. Math. 229, 461–485 (2019). https://doi.org/10.1007/s11856-018-1809-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1809-7

Navigation