Abstract
We prove that the Bochi–Mañé theorem is false, in general, for linear cocycles over non-invertible maps: there are C0-open subsets of linear cocycles that are not uniformly hyperbolic and yet have Lyapunov exponents bounded from zero.
Similar content being viewed by others
References
A. Avila, J. Santamaria and M. Viana, Holonomy invariance: rough regularity and applications to Lyapunov exponents, Astérisque 358 (2013), 13–74, 2013.
A. Avila and M. Viana, Extremal Lyapunov exponents: an invariance principle and applications, Inventiones Mathematicae 181 (2010), 115–189.
L. Backes, A. Brown and C. Butler, Continuity of Lyapunov exponents for cocycles with invariant holonomies, Journal of Modern Dynamics 12 (2018), 223–260.
J. Bochi, Genericity of zero Lyapunov exponents. PhD thesis, IMPA, 2000, preprint, www.preprint.impa.br.
J. Bochi, Genericity of zero Lyapunov exponents, Ergodic Theory and Dynamical Systems 22 (2002), 1667–1696.
J. Bochi, C1-generic symplectic diffeomorphisms: partial hyperbolicity and zero centre Lyapunov exponents, Journal of the Institute of Mathematics of Jussieu 9 (2010), 49–93.
J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic maps, Annals of Mathematics 161 (2005), 1423–1485.
C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Encyclopaedia of Mathematical Sciences, Vol. 102, Springer-Verlag, Berlin, 2005.
C. Bonatti, X. Gómez-Mont and M. Viana, Généricité d’exposants de Lyapunov nonnuls pour des produits déterministes de matrices, Annales de l’Institut Henri Poincaré. Analyse Non Linéaire 20 (2003), 579–624.
C. Bonatti and M. Viana, Lyapunov exponents with multiplicity 1 for deterministic products of matrices, Ergodic Theory and Dynamical Systems 24 (2004), 1295–1330.
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer Verlag, Berlin–New York, 1975.
C. Butler, Discontinuity of Lyapunov exponents near fiber bunched cocycles, Ergodic Theory and Dynamical Systems 38 (2018), 523–539.
P. Duarte and S. Klein, Lyapunov Exponents of Linear Cocycles, Atlantis Studies in Dynamical Systems, Vol. 3, Atlantis Press, Paris, 2016.
H. Furstenberg, Non-commuting random products, Transactions of the American Mathematical Society 108 (1963), 377–428.
H. Furstenberg and H. Kesten, Products of random matrices, Annals of Mathematical Statistics 31 (1960), 457–469.
M. Herman, Une méthode nouvelle pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2, Commentarii Mathematici Helvetici 58 (1983), 453–502.
B. Kalinin, Livšic theorem for matrix cocycles, Annals of Mathematics 173 (2011), 1025–1042.
J. Kingman, The ergodic theory of subadditive stochastic processes, Journal of the Royal Statistical Society 30 (1968), 499–510.
O. Knill, The upper Lyapunov exponent of SL(2,R) cocycles: discontinuity and the problem of positivity, in Lyapunov Exponents (Oberwolfach, 1990), Lecture Notes in Mathematics, Vol. 1486, Springer-Verlag, Berlin, 1991, pp. 86–97.
F. Ledrappier, Propriétés ergodiques des mesures de Sinäı, Institut des Hautes Études Scientifiques. Publications Mathématiques 59 (1984), 163–188.
F. Ledrappier, Positivity of the exponent for stationary sequences of matrices, in Lyapunov Exponents (Bremen, 1984), Lecture Notes in Mathematics, Vol. 1186, Springer-Verlag, Berlin, 1986, pp. 56–73.
F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Annals of Mathematics 122 (1985), 509–539.
R. Ma˜né, Oseledec’s theorem from the generic viewpoint, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Warsaw, 1983), PWN, Warsaw, 1984, pp. 1269–1276.
V. I. Oseledets, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Transactions of the Moscow Mathematical Society 19 (1968), 197–231.
V. A. Rokhlin, Lectures on the entropy theory of measure-preserving transformations, Russian Mathematical Surveys 22(1967), 1–52; translated from Uspekhi Matematičeskih Nauk 22 (1967), 3–56.
A. Tahzibi and J. Yang, Invariance principle and rigidity of high entropy measures, Transactions of the American Mathematical Society, to appear.
M. Viana, Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents, Annals of Mathematics 167 (2008), 643–680.
M. Viana, Lectures on Lyapunov Exponents, Cambridge Studies in Advanced Mathematics, Vol. 145, Cambridge University Press, Cambridge, 2014.
M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge Studies in Advanced Mathematics, Vol. 151, Cambridge University Press, Cambridge, 2015.
J. Yang, Entropy along expanding foliations, arXiv:1601.05504.
L.-S. Young, Some open sets of nonuniformly hyperbolic cocycles, Ergodic Theory and Dynamical Systems 13 (1993), 409–415.
Author information
Authors and Affiliations
Corresponding author
Additional information
Partially supported by Fondation Louis D.—Institut de France (project coordinated by M. Viana), CNPq and FAPERJ
Rights and permissions
About this article
Cite this article
Viana, M., Yang, J. Continuity of Lyapunov exponents in the C0 topology. Isr. J. Math. 229, 461–485 (2019). https://doi.org/10.1007/s11856-018-1809-7
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11856-018-1809-7