Skip to main content
Log in

The free group does not have the finite cover property

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove that the first order theory of nonabelian free groups eliminates the ∃-quantifier (in eq). Equivalently, since the theory of nonabelian free groups is stable, it does not have the finite cover property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bestvina, Degenerations of the hyperbolic space, Duke Mathematical Journal 56 (1988), 143–161.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Bestvina and M. Feighn, Notes on Sela’s work: Limit groups and Makanin–Razborov diagrams, in Geometric and Cohomological Methods in Group Theory, London Mathematical Society Lecture Note Series, Vol. 358, Cambridge University Press, 2009, pp. 1–29.

    Google Scholar 

  3. V. Guirardel, Limit groups and groups acting freely on Rn-trees, Geometry and Topology 8 (2004), 1427–1470.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Guirardel, Actions of finitely generated groups on R-trees, Université de Grenoble. Annales de l’Institut Fourier 58 (2008), 159–211.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. J. Keisler, Ultraproducts which are not saturated, Journal of of Symbolic Logic (1967), 23–46.

    Google Scholar 

  6. O. Kharlampovich and A. Myasnikov, Elementary theory of free nonabelian groups, Journal of Algebra 302 (2006), 451–552.

    Article  MathSciNet  MATH  Google Scholar 

  7. Yu. I. Merzlyakov, Positive formulae on free groups, Algebra i Logika 5 (1966), 257–266.

    MathSciNet  Google Scholar 

  8. J. W. Morgan and P. B. Shalen, Free actions of surface groups on R-trees, Topology 30 (1991), 143–154.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Inventiones Mathematicae 94 (1988), 53–80.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Pillay, Geometric Stability Theory, Oxford Logic Guides, Vol. 32, The Clarendon Press, Oxford University Press, New York, 1996.

    Google Scholar 

  11. C. Perin and R. Sklinos, Forking and JSJ decompositions in the free group, Journal of the European Mathematical Society 18 (2016), 1983–2017.

    Article  MathSciNet  MATH  Google Scholar 

  12. Z. Sela, Diophantine geometry over groups IX: Envelopes and Imaginaries, preprint, available at https://doi.org/www.ma.huji.ac.il/~zlil/

  13. Z. Sela, Diophantine geometry over groups I. Makanin–Razborov diagrams, Publications Mathématiques. Institut de Hautes études Scientifiques 93 (2001), 31–105.

    Article  MathSciNet  MATH  Google Scholar 

  14. Z. Sela, Diophantine geometry over groups II. Completions, closures and formal solutions, Israel Journal of Mathematics 134 (2003), 173–254.

    Article  MATH  Google Scholar 

  15. Z. Sela, Diophantine geometry over groups III. Rigid and solid solutions, Israel Journal of Mathematics 147 (2005), 1–73.

    Article  MathSciNet  MATH  Google Scholar 

  16. Z. Sela, Diophantine geometry over groups V1. Quantifier elimination I, Israel Journal of Mathematics 150 (2005), 1–197.

    Article  MathSciNet  MATH  Google Scholar 

  17. Z. Sela, Diophantine geometry over groups V2. Quantifier elimination II, Geometric and Functional Analysis 16 (2006), 537–706.

    MathSciNet  MATH  Google Scholar 

  18. Z. Sela, Diophantine geometry over groups VI: The elementary theory of free groups, Geometric and Functional Analysis 16 (2006), 707–730.

    MathSciNet  MATH  Google Scholar 

  19. Z. Sela, Diophantine geometry over groups VII: The elementary theory of a hyperbolic group, Proceedings of the London Mathematical Society 99 (2009), 217–273.

    Article  MathSciNet  MATH  Google Scholar 

  20. Z. Sela, Diophantine geometry over groups VIII: Stability, Annals of Mathematics 177 (2013), 787–868.

    Article  MathSciNet  MATH  Google Scholar 

  21. J.-P. Serre, Arbres, amalgames, SL2, Astérisque 46 (1983).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizos Sklinos.

Additional information

This work has been conducted while the author was supported by a Golda Meir postdoctoral fellowship at the Hebrew University of Jerusalem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sklinos, R. The free group does not have the finite cover property. Isr. J. Math. 227, 563–595 (2018). https://doi.org/10.1007/s11856-018-1748-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1748-3

Navigation