Skip to main content
Log in

Universal inequalities in Ehrhart theory

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we show the existence of universal inequalities for the h*-vector of a lattice polytope P, that is, we show that there are relations among the coefficients of the h*-polynomial that are independent of both the dimension and the degree of P. More precisely, we prove that the coefficients h* 1 and h* 2 of the h*-vector (h* 0, h* 1,..., h* d) of a lattice polytope of any degree satisfy Scott’s inequality if h* 3 = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Batyrev and J. Hofscheier, A generalization of a theorem of G. K. White, https://doi.org/abs/1004.3411

  2. V. Batyrev and B. Nill, Multiples of lattice polytopes without interior lattice points, Moscow Mathematical Journal 7 (2007), 195–207, 349.

    MathSciNet  MATH  Google Scholar 

  3. M. Beck and S. Robins, Computing the Continuous Discretely, Undergraduate Texts in Mathematics. Springer, New York, 2015.

    Google Scholar 

  4. E. Ehrhart, Sur les polyèdres rationnels homothétiques à n dimensions, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 254 (1962), 616–618.

    MATH  Google Scholar 

  5. M. Henk and M. Tagami, Lower bounds on the coefficients of Ehrhart polynomials, European Journal of Combinatorics 30 (2009), 70–83.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Hibi, A lower bound theorem for Ehrhart polynomials of convex polytopes, Advances in Mathematics 105 (1994), 162–165.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Hofscheier, L. Katthän and B. Nill, Ehrhart theory of spanning lattice polytopes, International Mathematics Research Notices, to appear.

  8. P. R. Scott, On convex lattice polygons, Bulletin of the Australian Mathematical Society 15 (1976), 395–399.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. P. Stanley, Decompositions of rational convex polytopes, Annals of Discrete Mathematics 6 (1980), 333–342.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. P. Stanley, On the Hilbert function of a graded Cohen–Macaulay domain, Journal of Pure and Applied Algebra 73 (1991), 307–314.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. P. Stanley, A monotonicity property of h-vectors and h*-vectors, European Journal of Combinatorics 14 (1993), 251–258.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Stapledon, Inequalities and Ehrhart δ-vectors, Transactions of the American Mathematical Society 361 (2009), 5615–5626.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Stapledon, Additive number theory and inequalities in Ehrhart theory, International Mathematics Research Notices (2016), 1497–1540.

    Google Scholar 

  14. J. Treutlein, Lattice polytopes of degree 2, Journal of Combinatorial Theory. Series A 117 (2010), 354–360.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Balletti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balletti, G., Higashitani, A. Universal inequalities in Ehrhart theory. Isr. J. Math. 227, 843–859 (2018). https://doi.org/10.1007/s11856-018-1744-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1744-7

Navigation