Skip to main content
Log in

Stallings’ folds for cube complexes

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We describe a higher dimensional analogue of Stallings’ folding sequences for group actions on CAT(0) cube complexes. We use it to give a characterization of quasiconvex subgroups of hyperbolic groups that act properly and cocompactly on CAT(0) cube complexes via finiteness properties of their hyperplane stabilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Agol, The virtual Haken conjecture, Documenta Mathematica 18 (2013), 1045–1087.

    MathSciNet  MATH  Google Scholar 

  2. J. Barnard, N. Brady and P. Dani, Super-exponential 2-dimensional Dehn functions, Groups, Geometry, and Dynamics 6 (2012), 1–51.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Beeker and N. Lazarovich, Resolutions of CAT(0) cube complexes and accessibility properties, Algebraic & Geometric Topology 16 (2016), 2045–2065.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Bergeron and D. T. Wise, A boundary criterion for cubulation, American Journal of Mathematics 134 (2012), 843–859.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bestvina and M. Feighn, Bounding the complexity of simplicial group actions on trees, Inventiones Mathematicae 103 (1991), 449–469.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. H. Bowditch, A topological characterisation of hyperbolic groups, Journal of the American Mathematical Society 11 (1998), 643–667.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Brown, Geometric structures on negatively curved groups and their subgroups, PhD thesis, University College London, August 2016.

    Google Scholar 

  8. W. Dison and T. R. Riley, Hydra groups, Commentarii Mathematici Helvetici 88 (2013), 507–540.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. J. Dunwoody., The accessibility of finitely presented groups, Inventiones Mathematicae 81 (1985), 449–457.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Gromov, Hyperbolic groups, in Essays in Group Theory, Mathematical Sciences Research Institute Publications, Vol. 8, Springer, New York, 1987, pp. 75–263.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. F. Hagen and D. T. Wise, Cubulating hyperbolic free-by-cyclic groups: the general case, Geometric and Functional Analysis 25 (2015), 134–179.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Haglund, Finite index subgroups of graph products, Geometriae Dedicata 135 (2008), 167–209.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Haglund and D. T. Wise, Special cube complexes, Geometric and Functional Analysis 17 (2008), 1551–1620.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Hsu and D. T. Wise, Cubulating graphs of free groups with cyclic edge groups, American Journal of Mathematics 132 (2010), 1153–1188.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Hsu and D. T. Wise, Cubulating malnormal amalgams, Inventiones Mathematicae 199 (2015), 293–331.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Kahn and V. Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Annals of Mathematics 175 (2012), 1127–1190.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Lauer and D. T. Wise, Cubulating one-relator groups with torsion, Mathematical Proceedings of the Cambridge Philosophical Society 155 (2013), 411–429.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Mitra, Cannon–Thurston maps for trees of hyperbolic metric spaces, Journal of Differential Geometry 48 (1998), 135–164.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. A. Niblo and L. D. Reeves, The geometry of cube complexes and the complexity of their fundamental groups, Topology 37 (1998), 621–633.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. A. Niblo and L. D. Reeves, Coxeter groups act on CAT(0) cube complexes, Journal of Group Theory 6 (2003), 399–413.

    Article  MathSciNet  MATH  Google Scholar 

  21. Y. Ollivier and D. T. Wise, Cubulating random groups at density less than 1/6, Transactions of the American Mathematical Society 363 (2011), 4701–4733.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Rips, Subgroups of small cancellation groups, Bulletin of the London Mathematical Society 14 (1982), 45–47.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. A. Roller, Poc sets, median algebras and group actions. an extended study of Dunwoody’s construction and Sageev’s theorem, Univeristy of Southampton, 1998.

    Google Scholar 

  24. M. Sageev, Ends of group pairs and non-positively curved cube complexes, Proceedings of the London Mathematical Society 3 (1995), 585–617.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Sageev, CAT(0) cube complexes and groups, in Geometric Group Theory, ISA/Park City Mathematics Series, Vol. 21, American Mathematical Society, Providence, RI, 2014, pp. 7–54.

    Google Scholar 

  26. M. Sageev and D. T. Wise, Cores for quasiconvex actions, Proceedings of the American Mathematical Society 143 (2015), 2731–2741.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. R. Stallings, Topology of finite graphs, Inventiones Mathematicae 71 (1983), 551–565.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. R. Stallings, Foldings of G-trees, in Arboreal Group Theory (Berkeley, CA, 1988), Mathematical Sciences Research Institute Publications, Vol. 19, Springer, New York, 1991, pp. 355–368.

    MATH  Google Scholar 

  29. D. T. Wise., Incoherent negatively curved groups, Proceedings of the American Mathematical Society 126 (1998), 957–964.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. T. Wise., Cubulating small cancellation groups, Geometric and Functional Analysis 14 (2004), 150–214.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. T. Wise, The structure of groups with a quasiconvex hierarchy, preprint, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nir Lazarovich.

Additional information

The first author is supported by ISF grant 1941/14.

The second author is supported by ETH Zürich Postdoctoral Fellowship Program. Received February 16, 2017 and in revised form August 22, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beeker, B., Lazarovich, N. Stallings’ folds for cube complexes. Isr. J. Math. 227, 331–363 (2018). https://doi.org/10.1007/s11856-018-1730-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1730-0

Navigation