Skip to main content
Log in

Cuspidal representations in the cohomology of Deligne–Lusztig varieties for GL(2) over finite rings

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We define closed subvarieties of some Deligne–Lusztig varieties for GL(2) over finite rings and study their ´etale cohomology. As a result, we show that cuspidal representations appear in it. Such closed varieties are studied in [Lus2] in a special case. We can do the same things for a Deligne–Lusztig variety associated to a quaternion division algebra over a non-archimedean local field. A product of such varieties can be regarded as an affine bundle over a curve. The base curve appears as an open subscheme of a union of irreducible components of the stable reduction of the Lubin–Tate curve in a special case. Finally, we state some conjecture on a part of the stable reduction using the above varieties. This is an attempt to understand bad reduction of Lubin–Tate curves via Deligne–Lusztig varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. A. M. Aubert, U. Onn, A. Prasad and A. Stasinski, On cuspidal representations of general linear groupsover discrete valuation rings, Israel Journal of Mathematics 175 (2010), 391–420.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. J. Bushnell and A. Frohlich, Gauss Sums and p-adic Division Algebras, Lecture Notes in Mathematics, Vol. 987, Springer-Verlag, Berlin–New York, 1983.

    Google Scholar 

  3. C. J. Bushnell and G. Henniart, The Local Langlands Conjecture for GL(2), Grundlehren der Mathematischen Wissenschaften, Vol. 335, Springer-Verlag, Berlin, 2006.

    Google Scholar 

  4. M. Boyarchenko and J. Weinstein, Maximal varieties and the local Langlands correspondence for GLn, Journal of the American Mathematical Society 29 (2016), 177–236.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Carayol, Non-abelian Lubin–Tate theory, in Automorphic Forms, Shimura varieties, and L-functions, Vol. II (Ann Arbor, MI, 1988), Perspectives in Mathematics, Vol. 11, Academic Press, Boston, MA, 1990, pp. 15–39.

    Google Scholar 

  6. C. Chan, The cohomology of semi-infinite Deligne–Lusztig varieties, preprint, arXiv:1606.01795v1.

  7. Z. Chen and A. Stasinski, The algebraisation of higher Deligne–Lusztig representations, Selecta Mathematica 23 (2017), 2907–2926.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Coleman and K. McMurdy, Stable reduction of X0(p3), Algebra & Number Theory 4 (2010), 357–431.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, Vol. 569, Springer-Verlag, Berlin, 1977.

    Google Scholar 

  10. P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Annals of Mathematics 103 (1976), 103–161.

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Imai and T. Tsushima, Stable models of Lubin–Tate curves with level three, Nagoya Mathematical Journal 225 (2017), 100–151.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. B. Ivanov, Affine Deligne–Lusztig varieties of higher level and the local Langlands correspondence for GL2, Advances in Mathematics 299 (2016), 640–686.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Lusztig, Some remarks on the supercuspidal representations of p-adic semisimple groups, in Automorphic Forms, Representations and L-functions. Part 1, Proceedings of Symposia in Pure Mathematics, Vol. 33, American Mathematical Society, Providence, RI, 1979, pp. 171–175.

    Google Scholar 

  14. G. Lusztig, Representations of reductive groups over finite rings, Representation Theory 8 (2004), 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  15. U. Onn, Representations of automorphism groups of finite o-modules of rank two, Advances in Mathematics 219 (2008), 2058–2085.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Rapoport, A guide to the reduction modulo p of Shimura varieties, Astérisque 298 (2005), 271–318.

    MathSciNet  MATH  Google Scholar 

  17. J. P. Serre, Linear Representations of Finite Groups, Graduate Texts inMathematics, Vol. 42, Springer, New York–Heidelberg, 1977.

    Google Scholar 

  18. A. Stasinski, The smooth representations of GL2(O), Communications in Algebra 37 (2009), 4416–4430.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Stasinski, Extended Deligne–Lusztig varieties for general and special linear groups, Advances in Mathematics 226 (2011), 2825–2853.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Tsushima, On the stable reduction of the Lubin–Tate curve of level two in the equal characteristic case, Journal of Number Theory 147 (2015), 184–210.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Tsushima, On non-abelian Lubin–Tate theory for GL(2) in the odd equal characteristic case, preprint, arXiv:1604.08857.

  22. T. Yoshida, On non-abelian Lubin–Tate theory via vanishing cycles, in Algebraic and Arithmetic Structures of Moduli Spaces (Sapporo 2007), Advanced Studied in Pure Mathematics, Vol. 58, Mathematical Society of Japan, Tokyo, 2010, pp. 361–402.

    Google Scholar 

  23. J. Weinstein, Explicit non-abelian Lubin–Tate theory for GL(2), preprint, arXiv:0910.1132v1.

  24. J. Weinstein, The local Jacquet–Langlands correspondence via Fourier analysis, Journal de Théorie des Nombres de Bordeaux 22 (2010), 483–512.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Weinstein, Semistable models for modular curves of arbitrary level, Inventiones Mathematicae 205 (2016), 459–526.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsushi Ito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, T., Tsushima, T. Cuspidal representations in the cohomology of Deligne–Lusztig varieties for GL(2) over finite rings. Isr. J. Math. 226, 877–926 (2018). https://doi.org/10.1007/s11856-018-1717-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1717-x

Navigation