Skip to main content
Log in

Quantitative multiple recurrence for two and three transformations

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We provide various counter examples for quantitative multiple recurrence problems for systems with more than one transformation. We show that:

  • There exists an ergodic system (X,X, μ,T1, T2) with two commuting transformations such that, for every 0 < ℓ < 4, there exists AX such that

    $$\mu \left( {A \cap T_1^{ - n}A \cap T_2^{ - n}A} \right) < \mu {\left( A \right)^\ell }foreveryn \ne 0$$
  • There exists an ergodic system (X,X, μ,T2, T3) with three commuting transformations such that, for every ℓ > 0, there exists AX such that

    $$\mu \left( {A \cap T_1^{ - n}A \cap T_2^{ - n}A \cap T_3^{ - n}A} \right) < \mu {\left( A \right)^\ell }foreveryn \ne 0$$
  • There exists an ergodic system (X,X, μ,T1, T2) with two transformations generating a 2-step nilpotent group such that, for every ℓ > 0, there exists AX such that

    $$\mu \left( {A \cap T_1^{ - n}A \cap T_2^{ - n}A} \right) < \mu {\left( A \right)^\ell }foreveryn \ne 0$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ajtai and E. Szemerédi, Sets of lattice points that form no squares, Studia Scientiarum Mathematicarum Hungarica 9 (1974), 9–11 (1975).

    MathSciNet  MATH  Google Scholar 

  2. F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression, Proceedings of the National Academy of Sciences of the United States of America 32 (1946), 331–332.

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Bergelson, B. Host and B. Kra, Multiple recurrence and nilsequences, Inventiones Mathematicae 160 (2005), 261–303.

    Article  MathSciNet  MATH  Google Scholar 

  4. Q. Chu, Multiple recurrence for two commuting transformations, Ergodic Theory and Dynamical Systems 31 (2011), 771–792.

    Article  MathSciNet  MATH  Google Scholar 

  5. Q. Chu and P. Zorin-Kranich, Lower bound in the Roth theorem for amenable groups, Ergodic Theory and Dynamical Systems 35 (2015), 1746–1766.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, Journal d’Analyse Mathématoque 34 (1978), 275–291 (1979).

    Article  MATH  Google Scholar 

  7. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, Journal d’Analyse Mathématique 31 (1977), 204–256.

    Article  MATH  Google Scholar 

  8. A. Khintchine, Eine Verschärfung des Poincaréschen “Wiederkehrsatzes”, Compositio Mathematica 1 (1935), 177–179.

    MathSciNet  MATH  Google Scholar 

  9. A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergodic Theory and Dynamical Systems 25 (2005), 201–213.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Parry, Ergodic properties of affine transformations and flows on nilmanifolds, American Journal of Mathematics 91 (1969), 757–771.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Salem and D. C. Spencer, On sets of integers which contain no three terms in arithmetical progression, Proceedings of the National Academy of Sciences of the United States of America 28 (1942), 561–563.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Donoso.

Additional information

The first author is supported by Fondecyt Iniciación en Investigación grant 11160061 and CMM-Basal grant PFB-03.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donoso, S., Sun, W. Quantitative multiple recurrence for two and three transformations. Isr. J. Math. 226, 71–85 (2018). https://doi.org/10.1007/s11856-018-1690-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1690-4

Navigation