Skip to main content
Log in

Positively finitely related profinite groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We define and study the class of positively finitely related (PFR) profinite groups. Positive finite relatedness is a probabilistic property of profinite groups which provides a first step to defining higher finiteness properties of profinite groups which generalize the positively finitely generated groups introduced by Avinoam Mann. We prove many asymptotic characterisations of PFR groups, for instance we show the following: a finitely presented profinite group is PFR if and only if it has at most exponential representation growth, uniformly over finite fields (in other words: the completed group algebra has polynomial maximal ideal growth). From these characterisations we deduce several structural results on PFR profinite groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Artin, The orders of the classical simple groups, Communications on Pure and Applied Mathematics 8 (1955), 455–472.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Aschbacher and R. Guralnick, Some applications of the first cohomology group, Journal of Algebra 90 (1984), 446–460.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Avni, B. Klopsch, U. Onn and C. Voll, Representation zeta functions of compact p-adic analytic groups and arithmetic groups, Duke Mathematical Journal 162 (2013), 111–197.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Babai, P. J. Cameron and P. P. Pálfy, On the orders of primitive groups with restricted nonabelian composition factors, Journal of Algebra 79 (1982), 161–168.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bhattacharjee, The probability of generating certain profinite groups by two elements, Israel Journal of Mathematics 86 (1994), 311–329.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. V. Borovik, L. Pyber and A. Shalev, Maximal subgroups in finite and profinite groups, Transactions of the American Mathematical Society 348 (1996), 3745–3761.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. W. Curtis and I. Reiner, Methods of Representation Theory. Vol. I, Wiley Classics Library, Wiley Classics Library, John Wiley & Sons, New York, 1990.

    Google Scholar 

  8. B. Fein, Representations of direct products of finite groups, Pacific Journal of Mathematics 20 (1967), 45–58.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Jaikin-Zapirain and L. Pyber, Random generation of finite and profinite groups and group enumeration, Annals of Mathematics 173 (2011), 769–814.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Larsen and A. Lubotzky, Representation growth of linear groups, Journal of the European Mathematical Society 10 (2008), 351–390.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Lubotzky, Pro-finite presentations, Journal of Algebra 242 (2001), 672–690.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Lubotzky and B. Martin, Polynomial representation growth and the congruence subgroup problem, Israel Journal of Mathematics 144 (2004), 293–316.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Lubotzky and D. Segal, Subgroup Growth, Progress in Mathematics, Vol. 212, Birkhäuser Verlag, Basel, 2003.

    Book  MATH  Google Scholar 

  14. A. Mann, Positively finitely generated groups, Forum Mathematicum 8 (1996), 429–459.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Mann and A. Shalev, Simple groups, maximal subgroups, and probabilistic aspects of profinite groups, Israel Journal of Mathematics 96 (1996), 449–468.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Quick, Probabilistic generation of wreath products of non-abelian finite simple groups, Communications in Algebra 32 (2004), 4753–4768.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Rényi, Probability Theory, North-Holland Series in Applied Mathematics and Mechanics, Vol. 10, North-Holland, Amsterdam–London; American Elsevier, New York, 1970.

    MATH  Google Scholar 

  18. L. Ribes and P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 40, Springer-Verlag, Berlin, 2010.

    Book  MATH  Google Scholar 

  19. D. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, Vol. 80, Springer-Verlag, New York, 1996.

    Google Scholar 

  20. M. Vannacci, On hereditarily just infinite profinite groups obtained via iterated wreath products, Journal of Group Theory 19 (2016), 233–238.

    MathSciNet  MATH  Google Scholar 

  21. A. J. Weir, Sylow p-subgroups of the classical groups over finite fields with characteristic prime to p, Proceedings of the American Mathematical Society 6 (1955), 529–533.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Kionke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kionke, S., Vannacci, M. Positively finitely related profinite groups. Isr. J. Math. 225, 743–770 (2018). https://doi.org/10.1007/s11856-018-1676-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1676-2

Navigation