Advertisement

Israel Journal of Mathematics

, Volume 225, Issue 1, pp 343–402 | Cite as

Locally elusive classical groups

  • Timothy C. Burness
  • Michael Giudici
Article
  • 20 Downloads

Abstract

Let G be a transitive permutation group of degree n with point stabiliser H and let r be a prime divisor of n. We say that G is r-elusive if it does not contain a derangement of order r. The problem of determining the r-elusive primitive groups can be reduced to the almost simple case, and the purpose of this paper is to complete the study of r-elusivity for almost simple classical groups. Building on our earlier work for geometric actions of classical groups, in this paper we handle the remaining non-geometric actions where H is almost simple and irreducible. This requires a completely different approach, using tools from the representation theory of quasisimple groups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Aschbacher, On the maximal subgroups of the finite classical groups, Inventiones Mathematicae 76 (1984), 469–514.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Aschbacher and G. M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Mathematical Journal 63 (1976), 1–91.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    N. Bourbaki, Lie Groups and Lie Algebras (Chapters 4–6), Elements of Mathematics, Springer, Berlin, 2002.CrossRefzbMATHGoogle Scholar
  4. [4]
    J. N. Bray, D. F. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Lowdimensional Finite Classical Groups, London Mathematical Society Lecture Note Series, Vol. 407, Cambridge University Press, Cambridge, 2013.Google Scholar
  5. [5]
    T. C. Burness, Fixed point spaces in primitive actions of simple algebraic groups, Journal of Algebra 265 (2003), 744–771.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    T. C. Burness, Fixed point spaces in actions of classical algebraic groups, Journal of Group Theory 7 (2004), 311–346.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    T. C. Burness, Fixed point ratios in actions of finite classical groups, II, Journal of Algebra 309 (2007), 80–138.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    T. C. Burness, Fixed point ratios in actions of finite classical groups, IV, Journal of Algebra 314 (2007), 749–788.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    T. C. Burness and M. Giudici, Classical Groups, Derangements and Primes, Australian Mathematical Society Lecture Series, Vol. 25, Cambridge University Press, Cambridge, 2016.zbMATHGoogle Scholar
  10. [10]
    T. C. Burness, M. Giudici and R. A. Wilson, Prime order derangements in primitive permutation groups, Journal of Algebra 341 (2011), 158–178.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    P. J. Cameron, M. Giudici, G. A Jones, W. M. Kantor, M. H. Klin, D. Marušič and L. A. Nowitz, Transitive permutation groups without semiregular subgroups, Journal of the London Mathematical Society 66 (2002), 325–333.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    B. Fein, W. M. Kantor and M. Schacher, Relative Brauer groups II, Journal für die Reine und Angewandte Mathematik 328 (1981), 39–57.MathSciNetzbMATHGoogle Scholar
  13. [13]
    The GAP Group, GAP—Groups, Algorithms and Programming, Version 4.4, 2004.Google Scholar
  14. [14]
    M. Giudici, Quasiprimitive groups with no fixed point free elements of prime order, Journal of the London Mathematical Society 67 (2003), 73–84.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Giudici and S. Kelly, Characterizing a family of elusive permutation groups, Journal of Group Theory 12 (2009), 95–105.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M. Giudici, L. Morgan, P. Potočnik and G. Verret, Elusive groups of automorphisms of digraphs of small valency, European Journal of Combinatorics 46 (2015), 1–9.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    D. Gorenstein, R. Lyons and R. Solomon, The Classification of the Finite Simple Groups, Number 3, Mathematical Surveys and Monographs, Vol. 40, American Mathematical Society, Providence, RI, 1998.zbMATHGoogle Scholar
  18. [18]
    R. M. Guralnick and J. Saxl, Generation of finite almost simple groups by conjugates, Journal of Algebra 268 (2003), 519–571.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    G. Hiss and G. Malle, Low dimensional representations of quasi-simple groups, LMS Journal of Computation and Mathematics 4 (2001), 22–63.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    G. Hiss and G. Malle, Corrigenda: Low dimensional representations of quasi-simple groups, LMS Journal of Computation and Mathematics 5 (2002), 95–126.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J. E. Humphreys, Conjugacy Classes in Semisimple Algebraic Groups, Mathematical Surveys and Monographs, Vol. 43, American Mathematical Society, Providence, RI, 1995.Google Scholar
  22. [22]
    G. D. James, On the minimal dimensions of irreducible representations of symmetric groups, Mathematical Proceedings of the Cambridge Philosophical Society 94 (1983), 417–424.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    C. Jansen, The minimal degrees of faithful representations of the sporadic simple groups and their covering groups, LMS Journal of Computation and Mathematics 8 (2005), 122–144.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    W. M. Kantor and Á. Seress, Prime power graphs for groups of Lie type, Journal of Algebra 247 (2002), 370–434.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    P. B. Kleidman and M. W. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Note Series, Vol. 129, Cambridge University Press, Cambridge, 1990.Google Scholar
  26. [26]
    A. S. Kleshchev and P. H. Tiep, Small-dimensional projective representations of symmetric and alternating groups, Algebra & Number Theory 6 (2012), 1773–1816.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    V. Landazuri and G. M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, Journal of Algebra 32 (1974), 418–443.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    M. W. Liebeck and G. M. Seitz, Unipotent and nilpotent classes in simple algebraic groups and Lie algebras, Mathematical Surveys and Monographs, Vol. 180, American Mathematical Society, Providence, RI, 2012.Google Scholar
  29. [29]
    M. W. Liebeck and G. M. Seitz, Reductive subgroups of exceptional algebraic groups, Memoirs of the American Mathematical Society 121 (1996).Google Scholar
  30. [30]
    M. W. Liebeck and A. Shalev, Simple groups, permutation groups and probability, Journal of the American Mathematical Society 12 (1999), 497–520.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    F. Lübeck, Small degree representations of finite Chevalley groups in defining characteristic, LMS Journal of Computation and Mathematics 4 (2001), 135–169.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    R. P. Martineau, On 2-modular representations of the Suzuki groups, American Journal of Mathematics 94 (1972), 55–72.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    C. E. Praeger, Á, Seress and S. Yalcinkaya, Generation of finite classical groups by pairs of elements with large fixed point spaces, Journal of Algebra 421 (2015), 56–101.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    J.-P. Serre, On a theorem of Jordan, Bulletin of the American Mathematical Society 40 (2003), 429–440.CrossRefzbMATHGoogle Scholar
  35. [35]
    R. Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society 80 (1968).Google Scholar
  36. [36]
    G. E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, Journal of the Australian Mathematical Society 3 (1963), 1–62.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    J. Xu, On elusive permutation groups of square-free degree, Communications in Algebra 37 (2009), 3200–3206.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2018

Authors and Affiliations

  1. 1.School of MathematicsUniversity of BristolBristolUK
  2. 2.Centre for the Mathematics of Symmetry and Computation, Department of Mathematics and StatisticsThe University of Western AustraliaCrawleyAustralia

Personalised recommendations