Skip to main content
Log in

Cocycle rigidity of abelian partially hyperbolic actions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Suppose G is a higher-rank connected semisimple Lie group with finite center and without compact factors. Let G = G or G = GV, where V is a finite-dimensional vector space V. For any unitary representation (π,H) of G, we study the twisted cohomological equation π(a)fλf = g for partially hyperbolic element aG and λU(1), as well as the twisted cocycle equation π(a1)f − λ1f = π(a2)g − λ2g for commuting partially hyperbolic elements a1, a2G. We characterize the obstructions to solving these equations, construct smooth solutions and obtain tame Sobolev estimates for the solutions. These results can be extended to partially hyperbolic flows in parallel.

As an application, we prove cocycle rigidity for any abelian higher-rank partially hyperbolic algebraic actions. This is the first paper exploring rigidity properties of partially hyperbolic that the hyperbolic directions don’t generate the whole tangent space. The result can be viewed as a first step toward the application of KAM method in obtaining differential rigidity for these actions in future works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Clozel, Démonstration de la conjecture τ, Inventiones Mathematicae 151 (2003), 297–328.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Cowling, Sur les coefficients des représentations unitaires des groupes de Lie simples, in Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg 1976–1978), II, Lecture Notes in Mathematics, Vol. 739, Springer, Berlin, 1979, pp. 132–178.

    Article  MATH  Google Scholar 

  3. D. Damjanović and A. Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic Rk actions, Discrete and Continuous Dynamical Systems 13 (2005), 985–1005.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions I. KAM method and Zk actions on the torus, Annals of Mathematics 172 (2010), 1805–1858.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Damjanovic and A. Katok, Local rigidity of homogeneous parabolic actions: I. A model case, Journal of Modern Dynamics 5 (2011), 203–235.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions. II: The geometric method and restrictions of Weyl chamber flows on SL(n,R)/Γ, International Mathematics Research Notices (2011), 4405–4430.

    Google Scholar 

  7. R. Goodman, Elliptic and subelliptic estimates for operators in an enveloping algebra, Duke Mathematical Journal 47 (1980), 819–833.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. W. Goodman, One-parameter groups generated by operators in an enveloping algebra, Journal of Functional Analysis 6 (1970), 218–236.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Goto, Index of the exponential map of a semi-algebraic group, American Journal of Mathematics 100 (1978), 837–843.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Kalinin and R. Spatzier, On the classification of Cartan actions, Geometric and Functional Analysis 17 (2007), 468–490.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Katok and A. Kononenko, Cocycles’ stability for partially hyperbolic systems, Mathematical Research Letters 3 (1996), 191–210.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Katok and R. J. Spatzier, Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions, Mathematical Research Letters 1 (1994), 193–202.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory, in Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), Proceedings of Symposia in Pure Mathematics, Vol. 69, American Mathematical Society, Providence, RI, 2001, pp. 107–173.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Katok, Combinatorial Constructions in Ergodic Theory and Dynamics, University Lecture Series, Vol. 30, American Mathematical Society, Providence, RI, 2003.

  15. A. Katok and R. J. Spatzier, First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Publications Mathématiques. Institut de Hautes Études Scientifiques 79 (1994), 131–156.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, in Sinaĭ’s Moscow Seminar on Dynamical Systems, American Mathematical Society Translations. Series 2, Vol. 171, American Mathematical Society, Providence, RI, 1996, pp. 141–172.

    MathSciNet  MATH  Google Scholar 

  17. D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Inventiones Mathematicae 138 (1999), 451–494.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 17, Springer-Verlag, Berlin, 1991.

  19. E. Nelson, Analytic vectors, Annals of Mathematics 70 (1959), 572–615.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. W. Robinson, Elliptic Operators and Lie Groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991.

    MATH  Google Scholar 

  21. L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Mathematica 137 (1976), 247–320.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Vingahe and Z. J. Wang, Local rigidity of twisted symmetric space examples, in progress.

  23. K. Vingahe and Z. J. Wang, Local rigidity of higher rank homogeneous abelian actions: a complete solution via the geometric method, submitted (2015).

    Google Scholar 

  24. Z. J. Wang, Various smooth rigidity examples in SL(2, R)×· · ·×SL(2,R)/Γ, in preparation.

  25. Z. J. Wang, Local rigidity of partially hyperbolic actions, Journal of Modern Dynamics 4 (2010), 271–327.

    Article  MathSciNet  MATH  Google Scholar 

  26. Z. J. Wang, New cases of differentiable rigidity for partially hyperbolic actions: symplectic groups and resonance directions, Journal of Modern Dynamics 4 (2010), 585–608.

    Article  MathSciNet  MATH  Google Scholar 

  27. Z. J. Wang, Uniform pointwise bounds for matrix coefficients of unitary representations on semidirect products, Journal of Functional Analysis 267 (2014), 15–79.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenqi Jenny Wang.

Additional information

Based on research supported by NSF grant DMS-1346876.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z.J. Cocycle rigidity of abelian partially hyperbolic actions. Isr. J. Math. 225, 147–191 (2018). https://doi.org/10.1007/s11856-018-1653-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1653-9

Navigation