Skip to main content
Log in

Flat surfaces, Bratteli diagrams and unique ergodicity à la Masur

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Recalling the construction of a flat surface from a Bratteli diagram, this paper considers the dynamics of the shift map on the space of all bi-infinite Bratteli diagrams as the renormalizing dynamics on a moduli space of flat surfaces of finite area. A criterion of unique ergodicity similar to that of Masur’s for flat surface holds: if there is a subsequence of the renormalizing dynamical system which has a good accumulation point, the translation flow or Bratteli–Vershik transformation is uniquely ergodic. Related questions are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Bezuglyi, J. Kwiatkowski and K. Medynets, Aperiodic substitution systems and their Bratteli diagrams, Ergodic Theory and Dynamical Systems 29 (2009), 37–72.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Bezuglyi, J. Kwiatkowski, K. Medynets and B. Solomyak, Finite rank Bratteli diagrams: structure of invariant measures, Transactions of the American Mathematical Society 365 (2013), 2637–2679.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. I. Bufetov, Limit theorems for suspension flows over Vershik automorphisms, Russian Mathematical Surveys 68 (2013), 789–860.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. I. Bufetov, Limit theorems for translation flows, Annals of Mathematics 179 (2014), 431–499.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Degli Esposti, G. Del Magno and M. Lenci, Escape orbits and ergodicity in infinite step billiards, Nonlinearity 13 (2000), 1275–1292.

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Delecroix, P. Hubert and S. Lelièvre, Diffusion for the periodic wind-tree model, Annales Sciemtifiques de l’École Normale Supérieure 47 (2014), 1085–1110.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Ferenczi, A. M. Fisher and M. Talet, Minimality and unique ergodicity for adic transformations, Journal d’Analyse Mathématique 109 (2009), 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. M. Fisher, Nonstationary mixing and the unique ergodicity of adic transformations, Stochastics and Dynamics 9 (2009), 335–391.

    Article  MathSciNet  MATH  Google Scholar 

  9. N. P. Frank and L. Sadun, Fusion: a general framework for hierarchical tilings of Rd, Geometriae Dedicata 171 (2014), 149–186.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Frączek and C. Ulcigrai, Non-ergodic mathbbZ-periodic billiards and infinite translation surfaces, Inventiones Mathematicae 197 (2014), 241–298.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Hubert, S. Lelièvre and S. Troubetzkoy, The Ehrenfest wind-tree model: periodic directions, recurrence, diffusion, Journal für die Reine und Angewandte Mathematik 656 (2011), 223–244.

    MathSciNet  MATH  Google Scholar 

  12. W. P. Hooper, Immersions and the space of all translation structures, preprint, arXiv:1310.5193, 2013.

    Google Scholar 

  13. W. P. Hooper, Immersions and translation structures on the disk, preprint, arXiv:1309.4795, 2013.

    Google Scholar 

  14. W. P. Hooper, The invariant measures of some infinite interval exchange maps, Geometry & Topology 19 (2015), 1895–2038

    Article  MathSciNet  MATH  Google Scholar 

  15. W. P. Hooper and R. Trevi˜no, Indiscriminate covers of infinite translation surfaces are innocent, not devious, Ergodic Theory and Dynamical Systems, to appear, https://doi.org/10.1017/etds.2017.120.

  16. P. Hubert and B. Weiss, Ergodicity for infinite periodic translation surfaces, Compositio Mathematica 149 (2013), 1364–1380.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Lindsey and R. Trevi˜no, Infinite flat surface models of ergodic systems, Discrete and Continuous Dynamical Systems 36 (2016), 5509–5553.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Rauzy, Une généralisation du développement en fraction continue, in Séminaire Delange–Pisot–Poitou, 18e année: 1976/77, héorie des nombres, Fasc. 1, Secrétariat Math., Paris, 1977, pp. Exp. No. 15, 16.

    Google Scholar 

  19. G. Rauzy, Échanges d’intervalles et transformations induites, Acta Arithmetica 34 (1979), 315–328.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Ralston and S. Troubetzkoy, Ergodic infinite group extensions of geodesic flows on translation surfaces, Journal of Modern Dynamics 6 (2012), 477–497.

    MathSciNet  MATH  Google Scholar 

  21. R. Trevi˜no, On the ergodicity of flat surfaces of finite area, Geometric and Functional Analysis 24 (2014), 360–386.

    Article  MathSciNet  Google Scholar 

  22. W. A. Veech, Gauss measures for transformations on the space of interval exchange maps, Annals of Mathematics 115 (1982), 201–242.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Treviño.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treviño, R. Flat surfaces, Bratteli diagrams and unique ergodicity à la Masur. Isr. J. Math. 225, 35–70 (2018). https://doi.org/10.1007/s11856-018-1636-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1636-x

Navigation