Israel Journal of Mathematics

, Volume 223, Issue 1, pp 399–421 | Cite as

Projections of Patterson-Sullivan measures and the dichotomy of Mohammadi-Oh

  • Laurent Dufloux


Let Γ be some discrete subgroup of SO°(n + 1, R) with finite Bowen-Margulis-Sullivan measure. We study the dynamics of the Bowen-Margulis-Sullivan measure with respect to closed connected subspaces of the N component in some Iwasawa decomposition SO°(n+1, R) = KAN. We also study the dimension of projected Patterson-Sullivan measures along some fixed direction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. Benoist and J.-F. Quint, Mesures stationnaires et fermés invariants des espaces homogènes, Ann. of Math. (2) 174 (2011), 1111᾿162.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    L. Dufloux, The case of equality in the dichotomy of Mohammadi-Oh, ArXiv e-prints (2017), Scholar
  3. [3]
    L. Dufloux, Hausdorff dimension of limit sets, Theses, Université Paris 13, October 2015, Scholar
  4. [4]
    L. Dufloux, Hausdorff dimension of limit sets, Geometriae Dedicata (2017).Google Scholar
  5. [5]
    M. Hochman, Dynamics on fractals and fractal distributions, ArXiv e-prints (2010).Google Scholar
  6. [6]
    A. S. Kechris, Countable sections for locally compact group actions, Ergodic Theory Dynam. Systems 12 (1992), 283᾿95.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, Vol. 44, Cambridge University Press, Cambridge, 1995, Fractals and rectifiability.Google Scholar
  8. [8]
    F. Maucourant and B. Schapira, On topological and measurable dynamics of unipotent frame Sows for hyperbolic manifolds, to appear soon, 2016.Google Scholar
  9. [9]
    A. Mohammadi and H. Oh, Ergodicitv of unipotent Bows and Kleinian groups, J. Amer. Math. Soc. 28 (2015), 531᾿77.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    F. Paulin, M. Pollicott and B. Schapira, Equilibrium states in negative curvature, Astérisque (2015), viii+281.Google Scholar
  11. [11]
    J.-F. Quint, An overview of Patterson-Sullivan theory, 2006.Google Scholar
  12. [12]
    T. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.) (2003), vi+96.Google Scholar
  13. [13]
    D. Winter, Mixing of frame flow for rank one locally symmetric spaces and measure classification, ArXiv e-prints (2014).Google Scholar

Copyright information

© Hebrew University of Jerusalem 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of OuluFI-90014Finland

Personalised recommendations