Advertisement

Israel Journal of Mathematics

, Volume 223, Issue 1, pp 309–322 | Cite as

On polynomial rings over nil rings in several variables and the central closure of prime nil rings

  • M. Chebotar
  • W.-F. Ke
  • P.-H. Lee
  • E. R. Puczyłowski
Article

Abstract

We prove that the ring of polynomials in several commuting indeterminates over a nil ring cannot be homomorphically mapped onto a ring with identity, i.e. it is Brown-McCoy radical. It answers a question posed by Puczyłowski and Smoktunowicz. We also show that the central closure of a prime nil ring cannot be a simple ring with identity, solving a problem due to Beidar.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. A. Amitsur, Nil radicals. Historical notes and some new results, (1973), 47᾿5. Colloq. Math. Soc. Janos Bolyai, Vol. 6.MathSciNetzbMATHGoogle Scholar
  2. [2]
    K. I. Beidar, W. S. Martindale, III and A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 196, Marcel Dekker, Inc., New York, 1996.Google Scholar
  3. [3]
    M. A. Chebotar, On a problem by Beidar concerning the central closure, Linear Algebra Appl. 429 (2008), 835᾿40.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. A. Chebotar, W.-F. Ke, P.-H. Lee and E. R. Puczylowski, A note on polynomial rings over nil rings, in Modules and comodules, Trends Math., Birkhauser Verlag, Basel, 2008, pp. 169᾿72.CrossRefGoogle Scholar
  5. [5]
    M. Ferrero and R. Wisbauer, Unitary strongly prime rings and related radicals, J. Pure Appl. Algebra 181 (2003), 209᾿26.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    J. E. Goodman and J. O'Rourke (eds.), Handbook of discrete and computational geometry, second ed., Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2004.Google Scholar
  7. [7]
    A. KauCikas and R. Wisbauer, On strongly prime rings and ideals, Comm. Algebra 28 (2000), 5461᾿473.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J. Krempa, Logical connections between some open problems concerning nil rings, Fund. Math. 76 (1972), 121᾿30.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    E. R. Puczytowski, Some questions concerning radicals of associative rings, in Theory of radicals (Szekszárd, 1991), Colloq. Math. Soc. János Bolyai, Vol. 61, North-Holland, Amsterdam, 1993, pp. 209᾿27.Google Scholar
  10. [10]
    E. R. Puczytowski, Questions related to Koethe's nil ideal problem, in Algebra and its applications, Contemp. Math., Vol. 419, Amer. Math. Soc., Providence, RI, 2006, pp. 269᾿83.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    E. R. Puczytowski and A. Smoktunowicz, On maximal ideals and the Brown-McCoy radical of polynomial rings, Comm. Algebra 26 (1998), 2473᾿482.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    E. R. Puczytowski and R. Wiegandt, Kostia's contribution to radical theory and related topics, in Rings and nearrings, Walter de Gruyter, Berlin, 2007, pp. 121᾿57.Google Scholar
  13. [13]
    R. Schneider, Convex bodies: the Brunn Minkowski theory, expanded ed., Encyclopedia ol Mathematics and its Applications, Vol. 151, Cambridge University Press, Cambridge, 2014.Google Scholar
  14. [14]
    A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra 233 (2000), 427᾿36.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Smoktunowicz, On some results related to Köthe's conjecture, Serdica Math. J. 27 (2001), 159᾿70.MathSciNetzbMATHGoogle Scholar
  16. [16]
    A. Smoktunowicz, R[x, y] is Brown-McCoy radical if R[x] is Jacobson radical, in Proceedings of the Third international Algebra Conference (Tainan, 2002), Kluwer Acad. Publ., Dordrecht, 2003, pp. 235᾿40.CrossRefGoogle Scholar
  17. [17]
    A. Smoktunowicz, Makar Limanov's conjecture on free subalgebras, Adv. Math. 222 (2009), 2107᾿116.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2018

Authors and Affiliations

  • M. Chebotar
    • 1
  • W.-F. Ke
    • 2
  • P.-H. Lee
    • 3
  • E. R. Puczyłowski
    • 4
  1. 1.Department of Mathematical SciencesKent State UniversityKentUSA
  2. 2.Department of Mathematics and Research Center for Theoretical SciencesNational Cheng Kung UniversityTainan 701Taiwan
  3. 3.Department of MathematicsNational Taiwan University and National Center for Theoretical SciencesTaipei 106Taiwan
  4. 4.Institute of MathematicsUniversity of WarsawWarsawPoland

Personalised recommendations