On polynomial rings over nil Rings in several variables and the central closure of prime nil rings

  • M. Chebotar
  • W.-F. Ke
  • P.-H. Lee
  • E. R. Puczyłowski
Article
  • 20 Downloads

Abstract

We prove that the ring of polynomials in several commuting indeterminates over a nil ring cannot be homomorphically mapped onto a ring with identity, i.e. it is Brown-McCoy radical. It answers a question posed by Puczylowski and Smoktunowicz. We also show that the central closure of a prime nil ring cannot be a simple ring with identity, solving a problem due to Beidar.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. A. Amitsur, Nil radicals. Historical notes and some new results, (1973), 47–65. Colloq. Math. Soc. Janos Bolyai, Vol. 6.Google Scholar
  2. [2]
    K. I. Beidar, W. S. Martindale, III and A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 196, Marcel Dekker, Inc., New York, 1996.Google Scholar
  3. [3]
    M. A. Chebotar, On a problem by Beidar concerning the central closure, Linear Algebra Appl., 429 (2008), 835–840.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M. A. Chebotar, W.-F. Ke, P.-H. Lee and E. R. Puczylowski, A note on polynomial rings over nil rings, in Modules and comodules, Trends Math., Birkhauser Verlag, Basel, 2008, pp. 169–172.Google Scholar
  5. [5]
    M. Ferrero and R. Wisbauer, Unitary strongly prime rings and related radicals, J. Pure Appl. Algebra, 181 (2003), 209–226.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J. E. Goodman and J. O'Rourke (eds.), Handbook of discrete and computational geometry, second ed., Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2004.Google Scholar
  7. [7]
    A. KauCikas and R. Wisbauer, On strongly prime rings and ideals, Comm. Algebra, 28 (2000), 5461–5473.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    J. Krempa, Logical connections between some open problems concerning nil rings, Fund. Math., 76 (1972), 121–130.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    E. R. Puczytowski, Some questions concerning radicals of associative rings, in Theory of radicals (Szekszird, 1991), Colloq. Math. Soc. Janos Bolyai, Vol. 61, North-Holland, Amsterdam, 1993, pp. 209–227.MathSciNetCrossRefGoogle Scholar
  10. [10]
    E. R. Puczytowski, Questions related to Koethe's nil ideal problem, in Algebra and its applications, Contemp. Math., Vol. 419, Amer. Math. Soc., Providence, RI, 2006, pp. 269–283.CrossRefGoogle Scholar
  11. [11]
    E. R. Puczytowski and A. Smoktunowicz, On maximal ideals and the Brown-McCoy radical of polynomial rings, Comm. Algebra, 26 (1998), 2473–2482.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    E. R. Puczytowski and R. Wiegandt, Kostia's contribution to radical theory and related topics, in Rings and nearrings, Walter de Gruyter, Berlin, 2007, pp. 121–157.Google Scholar
  13. [13]
    R. Schneider, Convex bodies: the Brunn Minkowski theory, expanded ed., Encyclopedia ol Mathematics and its Applications, Vol. 151, Cambridge University Press, Cambridge, 2014.Google Scholar
  14. [14]
    A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra, 233 (2000), 427–436.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    A. Smoktunowicz, On some results related to Kothe's conjecture, Serdica Math. J., 27 (2001), 159–170.MathSciNetMATHGoogle Scholar
  16. [16]
    A. Smoktunowicz, R[x, y] is Brown-McCoy radical if R[x, y] is Jacobson radical, in Proceedings of the Third International Algebra Conference (Tainan, 2002), Kluwer Acad. Publ., Dordrecht, 2003, pp. 235–240.CrossRefGoogle Scholar
  17. [17]
    A. Smoktunowicz, Makar Limanov's conjecture on free subalgebras, Adv. Math., 222 (2009), 2107–2116.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2017

Authors and Affiliations

  • M. Chebotar
    • 1
  • W.-F. Ke
    • 2
  • P.-H. Lee
    • 3
  • E. R. Puczyłowski
    • 4
  1. 1.Department of Mathematical SciencesKent State UniversityKentUSA
  2. 2.Department of Mathematics and Research Center for Theoretical SciencesNational Cheng Kung UniversityTainanTaiwan
  3. 3.Department of MathematicsNational Taiwan University and National Center for Theoretical SciencesTaipeiTaiwan
  4. 4.Institute of MathematicsUniversity of WarsawWarsawPoland

Personalised recommendations