A Quasi-isometric embedding into the group of Hamiltonian diffeomorphisms with Hofer’s Metric

Article
  • 5 Downloads

Abstract

We construct an embedding Φ of [0, 1] into Ham(M, ω), the group of Hamiltonian diffeomorphisms of a suitable closed symplectic manifold (M, ω). We then prove that Φ is in fact a quasi-isometry. After imposing further assumptions on (M, ω), we adapt our methods to construct a similar embedding of R ⊕ [0, 1] into either Ham(M, ω) or Ham(M, ω), the universal cover of Ham(M, ω). Along the way, we prove results related to the filtered Floer chain complexes of radially symmetric Hamiltonians. Our proofs rely heavily on a continuity result for barcodes (as presented in [28]) associated to filtered Floer homology viewed as a persistence module.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Alvarez-Gavela, V. Kaminker, A. Kislev, K. Kliakhandler, A. Pavlichenko, L. Rigolli, D. Rosen, O. Shabtai, B. Stevenson and J. Zhang, Embeddings of free groups into asymptotic cones of Hamiltonian diffeomorphisms, Journal of Topology and Analysis, to appear, arXiv:1602.05842.Google Scholar
  2. [2]
    K. Cieliebak, A. Floer, H. Hofer and K. Wysocki, Applications of symplectic homology II: Stability of the action spectrum, Mathematische Zeitschrift, 223 (1996), 27–45.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    W. Crawley-Boevey, Decomposition of pointwise finite-dimensional persistence modules, Journal of Algebra and its Applications, 14 (2015), 1550066.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology, International Mathematics Research Notices, 30 (2003), 1635–1676.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    M. Entov and L. Polterovich, Symplectic quasi-states and semi-simplicity of quantum homology, in Toric Topology, Contemporary Mathematics, Vol. 460, American Mathematical Society, Providence, RI, 2008, pp. 47–70.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    M. Entov and L. Polterovich, Rigid subsets of symplectic manifolds, Compositio Mathematica, 145 (2009), 773–826.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    M. Entov, L. Polterovich and F. Zapolsky, Quasi-morphisms and the Poisson bracket, Pure and Applied Mathematics Quarterly, 3 (2007), 1037–1055.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    A. Floer, Symplectic fixed points and holomorphic spheres, Communications in Mathematical Physics, 120 (1989), 575–611.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    H. Hofer and D. Salamon, Floer homology and Novikov rings, in The Floer Memorial Volume, Progress in Mathematics, Vol. 133, Birkhäuser, Basel, 1995, pp. 483–524.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    V. Humilière, F. Le Roux and S. Seyfaddini, Towards a dynamical interpretation of Hamiltonian spectral invariants on surfaces, Geometry & Topology, 20 (2016), 2253–2334.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    L. Lalonde and D. McDuff, Hofer’s L -geometry: energy and stability of flows II, Inventiones Mathematicae 122 (1995), 1–69.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    D. McDuff, Monodromy in Hamiltonian Floer theory, Commentarii Mathematici Helvetici, 85 (2010), 95–133.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    D. McDuff and D. Salamon, J-holomorphic Curves and Symplectic Topology, American Mathematical Society Colloquium Publications, Vol. 52, American Mathematical Society, Providence, RI, 2012.Google Scholar
  14. [14]
    A. Oancea, A survey of Floer homology for manifolds with contact type boundary or symplectic homology, in Symplectic Geometry and Floer Homology. A Survey of the Floer Homology for Manifolds with Contact Type Boundary or Symplectic Homology, Ensaios Matemáticos, Vol. 7, Sociedade Brasileira Matemática, Rio de Janeiro, 2004, pp. 51–91.MATHGoogle Scholar
  15. [15]
    Y. Ostrover, A comparison of Hofer’s metrics on Hamiltonian diffeomorphisms and Lagrangian submanifolds, Communications in Contemporary Mathematics 5 (2003), 803–811.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    J. Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of J-holomorphic curves, Geometry & Topology, 20 (2016), 779–1034.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    L. Polterovich, Hofer’s diameter and Lagrangian intersections, International Mathematics Research Notices, 4 (1998), 217–223.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001.Google Scholar
  19. [19]
    L. Polterovich and E. Shelukhin, Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules, Selecta Mathematica, 22 (2016), 227–296.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    P. Py, Quelques plat pour la métrique de Hofer, Journal für die Reine und Angewandte Mathematik, 620 (2008), 185–193.MathSciNetMATHGoogle Scholar
  21. [21]
    D. Salamon, Lectures on Floer homology, in Symplectic Geometry and Topology (Park City, UT, 1997), ISA/Park City Mathematics Series, Vol. 7, American Mathematical Society, Providence, RI, 1999, pp. 143–229.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Communications in Pure and Applied Mathematics, 45 (1992), 1303–1360.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific Journal of Mathematics, 193 (2000), 419–461.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    S. Seyfaddini, Spectral killers and Poisson bracket invariants, Journal of Modern Dynamics, 9 (2015), 51–66.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    M. Usher, Boundary depth in Hamiltonian Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds, Israel Journal of Mathematics, 184 (2011), 1–57.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    M. Usher, Deformed Hamiltonian Floer theory, capacity estimates, and Calabi quasimorphisms, Geometry & Topology, 15 (2011), 1313–1417.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    M. Usher, Hofer’s metrics and boundary depth, Annales Scientifiques de l’École Normale Supérieure, 46 (2013), 57–128.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    M. Usher and J. Zhang, Persistent homology and Floer–Novikov theory, Geometry & Topology, 20 (2016), 3333–3430.MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    A. Zomorodian and G. Carlsson, Computing persistent homology, Discrete & Computational Geometry, 33 (2005), 249–274.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of GeorgiaAthensUSA

Personalised recommendations