Advertisement

Israel Journal of Mathematics

, Volume 223, Issue 1, pp 141–195 | Cite as

A Quasi-isometric embedding into the group of Hamiltonian diffeomorphisms with Hofer’s metric

  • Bret Stevenson
Article

Abstract

We construct an embedding Φ of [0, 1] into Ham(M, ω), the group of Hamiltonian diffeomorphisms of a suitable closed symplectic manifold (M, ω). We then prove that Φ is in fact a quasi-isometry. After imposing further assumptions on (M, ω), we adapt our methods to construct a similar embedding of ℝ ⊕ [0, 1] into either Ham(M, ω) or
, the universal cover of Ham(M, ω). Along the way, we prove results related to the filtered Floer chain complexes of radially symmetric Hamiltonians. Our proofs rely heavily on a continuity result for barcodes (as presented in [28]) associated to filtered Floer homology viewed as a persistence module.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Alvarez-Gavela, V. Kaminker, A. Kislev, K. Kliakhandler, A. Pavlichenko, L. Rigolli, D. Rosen, O. Shabtai, B. Stevenson and J. Zhang, Embeddings of free groups into asymptotic cones of Hamiltonian diffeomorphisms, Journal of Topology and Analysis, to appear, arXiv:1602.05842.Google Scholar
  2. [2]
    K. Cieliebak, A. Floer, H. Hofer and K. Wysocki, Applications of symplectic homology II: Stability of the action spectrum, Mathematische Zeitschrift 223 (1996), 27᾿5.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    W. Crawley-Boevey, Decomposition of pointwise finite-dimensional persistence modules, Journal of Algebra and its Applications 14 (2015), 1550066.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology, International Mathematics Research Notices 30 (2003), 1635᾿676.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    M. Entov and L. Polterovich, Symplectic quasi-states and semi-simplicity of quantum homology, in Toric Topology, Contemporary Mathematics, Vol. 460, American Mathematical Society, Providence, RI, 2008, pp. 47᾿0.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    M. Entov and L. Polterovich, Rigid subsets of symplectic manifolds, Compositio Mathematica 145 (2009), 773᾿26.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    M. Entov, L. Polterovich and F. Zapolsky, Quasi-morphisms and the Poisson bracket, Pure and Applied Mathematics Quarterly 3 (2007), 1037᾿055.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    A. Floer, Symplectic fixed points and holomorphic spheres, Communications in Mathematical Physics 120 (1989), 575᾿11.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    H. Hofer and D. Salamon, Floer homology and Novikov rings, in The Floer Memorial Volume, Progress in Mathematics, Vol. 133, Birkhäuser, Basel, 1995, pp. 483᾿24.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    V. Humilière, F. Le Roux and S. Seyfaddini, Towards a dynamical interpretation of Hamiltonian spectral invariants on surfaces, Geometry & Topology 20 (2016), 2253᾿334.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    L. Lalonde and D. McDuff, Hofer’s L↿geometry: energy and stability of flows II, Inventiones Mathematicae 122 (1995), 1᾿9.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    D. McDuff, Monodromy in Hamiltonian Floer theory, Commentarii Mathematici Helvetici 85 (2010), 95᾿33.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    D. McDuff and D. Salamon, J-holomorphic Curves and Symplectic Topology, American Mathematical Society Colloquium Publications, Vol. 52, American Mathematical Society, Providence, RI, 2012.Google Scholar
  14. [14]
    A. Oancea, A survey of Floer homology for manifolds with contact type boundary or symplectic homology, in Symplectic Geometry and Floer Homology. A Survey of the Floer Homology for Manifolds with Contact Type Boundary or Symplectic Homology, Ensaios Matemáticos, Vol. 7, Sociedade Brasileira Matemática, Rio de Janeiro, 2004, pp. 51᾿1.MathSciNetMATHGoogle Scholar
  15. [15]
    Y. Ostrover, A comparison of Hofer’s metrics on Hamiltonian diffeomorphisms and Lagrangian submanifolds, Communications in Contemporary Mathematics 5 (2003), 803᾿11.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    J. Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of J-holomorphic curves, Geometry & Topology 20 (2016), 779᾿034.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    L. Polterovich, Hofer’s diameter and Lagrangian intersections, International Mathematics Research Notices 4 (1998), 217᾿23.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001.Google Scholar
  19. [19]
    L. Polterovich and E. Shelukhin, Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules, Selecta Mathematica 22 (2016), 227᾿96.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    P. Py, Quelques plat pour la métrique de Hofer, Journal für die Reine und Angewandte Mathematik 620 (2008), 185᾿93.MathSciNetMATHGoogle Scholar
  21. [21]
    D. Salamon, Lectures on Floer homology, in Symplectic Geometry and Topology (Park City, UT, 1997), ISA/Park City Mathematics Series, Vol. 7, American Mathematical Society, Providence, RI, 1999, pp. 143᾿29.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Communications in Pure and Applied Mathematics 45 (1992), 1303᾿360.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific Journal of Mathematics 193 (2000), 419᾿61.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    S. Seyfaddini, Spectral killers and Poisson bracket invariants, Journal of Modern Dynamics 9 (2015), 51᾿6.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    M. Usher, Boundary depth in Hamiltonian Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds, Israel Journal of Mathematics 184 (2011), 1᾿7.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    M. Usher, Deformed Hamiltonian Floer theory, capacity estimates, and Calabi quasimorphisms, Geometry & Topology 15 (2011), 1313᾿417.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    M. Usher, Hofer’s metrics and boundary depth, Annales Scientifiques de l’École Normale Supérieure 46 (2013), 57᾿28.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    M. Usher and J. Zhang, Persistent homology and Floer–Novikov theory, Geometry & Topology 20 (2016), 3333᾿430.MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    A. Zomorodian and G. Carlsson, Computing persistent homology, Discrete & Computational Geometry 33 (2005), 249᾿74.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of GeorgiaAthensUSA

Personalised recommendations