Advertisement

Israel Journal of Mathematics

, Volume 223, Issue 1, pp 1–52 | Cite as

An adjunction formula for the Emerton–Jacquet functor

  • John Bergdall
  • Przemysław Chojecki
Article
  • 63 Downloads

Abstract

The Emerton–Jacquet functor is a tool for studying locally analytic representations of p-adic Lie groups. It provides a way to access the theory of p-adic automorphic forms. Here we give an adjunction formula for the Emerton–Jacquet functor, relating it directly to locally analytic inductions, under a strict hypothesis that we call non-critical. We also further study the relationship to socles of principal series in the non-critical setting.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BC14]
    J. Bergdall and P. Chojecki, Ordinary representations and companion points for U(3) in the indecomposable case, Preprint (2014).Google Scholar
  2. [BE10]
    C. Breuil and M. Emerton, Représentations p-adiques ordinaires de GL2(Qp) et compatibilité local-global, Astérisque (2010), 255᾿15.Google Scholar
  3. [BH15]
    C. Breuil and F. Herzig, Ordinary representations of GL2(Qp) and fundamental algebraic representations, Duke Math. J. 164 (2015), 1271᾿352.MathSciNetCrossRefMATHGoogle Scholar
  4. [BHS17]
    C. Breuil, E. Hellmann and B. Schraen, Une interprétation modulaire de la variété trianguline, Math. Ann. 367 (2017), 1587᾿645.MathSciNetCrossRefMATHGoogle Scholar
  5. [Boy99]
    P. Boyer, Mauvaise réduction des variétés de Drinfeld et correspondance de Langlands locale, Invent. Math. 138 (1999), 573᾿29.MathSciNetCrossRefMATHGoogle Scholar
  6. [Bre15]
    C. Breuil, Vers le socle localement analytique pour GLn II, Math. Ann. 361 (2015), 741᾿85.MathSciNetCrossRefMATHGoogle Scholar
  7. [Bre16a]
    C. Breuil, Ext1 localement analytique et compatibilité local-global, Preprint (2016).Google Scholar
  8. [Bre16b]
    C. Breuil, Socle localement analytique I, Ann. Inst. Fourier (Grenoble) 66 (2016), 633᾿85.MathSciNetCrossRefMATHGoogle Scholar
  9. [BZ77]
    I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441᾿72.MathSciNetCrossRefMATHGoogle Scholar
  10. [CE12]
    F. Calegari and M. Emerton, Completed cohomology—a survey, in Non-abelian fundamental groups and Iwasawa theory, London Math. Soc. Lecture Note Ser., Vol. 393, Cambridge Univ. Press, Cambridge, 2012, pp. 239᾿57.MATHGoogle Scholar
  11. [CM98]
    R. Coleman and B. Mazur, The eigencurve, in Galois representations in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser., Vol. 254, Cambridge Univ. Press, Cambridge, 1998, pp. 1᾿13.MathSciNetMATHGoogle Scholar
  12. [Din14]
    Y. Ding, Formes modulaires p-adiques sur les courbes de Shimura unitaires et comparibilité local-global, Ph.D. thesis, Université Paris-Sud (2014).Google Scholar
  13. [Eme]
    M. Emerton, Jacquet modules of locally analytic representations of p-adic reductive groups. II. The relation to parabolic induction, J. Institut Math. Jussieu., to appear.Google Scholar
  14. [Eme06a]
    M. Emerton, Jacquet modules of locally analytic representations of p-adic reductive groups. I. Construction and first properties, Ann. Sci. École Norm. Sup. (4) 39 (2006), 775᾿39.MathSciNetCrossRefMATHGoogle Scholar
  15. [Eme06b]
    M. Emerton, On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms, Invent. Math. 164 (2006), 1᾿4.MathSciNetCrossRefMATHGoogle Scholar
  16. [Eme17]
    M. Emerton, Locally analytic vectors in representations of locally p-adic analytic groups, Mem. Amer. Math. Soc. 248 (2017), iv+158.Google Scholar
  17. [HL11]
    R. Hill and D. Loeffler, Emerton’s Jacquet functors for non-Borel parabolic subgroups, Doc. Math. 16 (2011), 1᾿1.MathSciNetMATHGoogle Scholar
  18. [Hum08]
    J. E. Humphreys, Representations of semisimple Lie algebras in the BGG category O, Graduate Studies in Mathematics, Vol. 94, American Mathematical Society, Providence, RI, 2008.Google Scholar
  19. [Jac75]
    H. Jacquet, Sur les représentations des groupes réductifs p-adiques, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), Aii, A1271–A1272.MATHGoogle Scholar
  20. [Jan03]
    J. C. Jantzen, Representations of algebraic groups, second ed., Mathematical Surveys and Monographs, Vol. 107, American Mathematical Society, Providence, RI, 2003.Google Scholar
  21. [OS14]
    S. Orlik and M. Strauch, Category O and locally analytic representations, Preprint (2014).Google Scholar
  22. [OS15]
    S. Orlik and M. Strauch, On Jordan-Hölder series of some locally analytic representations, J. Amer. Math. Soc. 28 (2015), 99᾿57.MathSciNetCrossRefMATHGoogle Scholar
  23. [Sch11]
    B. Schraen, Représentations localement analytiques de GL3(Qp), Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 43᾿45.MathSciNetCrossRefMATHGoogle Scholar
  24. [ST02]
    P. Schneider and J. Teitelbaum, Locally analytic distributions and p-adic representation theory, with applications to GL2, J. Amer. Math. Soc. 15 (2002), 443᾿68.MathSciNetCrossRefMATHGoogle Scholar
  25. [ST05]
    P. Schneider and J. Teitelbaum, Duality for admissible locally analytic representations, Represent. Theory 9 (2005), 297᾿26.MathSciNetCrossRefMATHGoogle Scholar
  26. [STP01]
    P. Schneider, J. Teitelbaum and D. Prasad, U(g)-finite locally analytic representations, Represent. Theory 5 (2001), 111᾿28, With an appendix by Dipendra Prasad.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsBoston UniversityBostonUSA
  2. 2.Mathematical InstituteUniversity of Oxford, Andrew Wiles Building, Radcliffe Observatory QuarterOxfordEngland

Personalised recommendations