Advertisement

Israel Journal of Mathematics

, Volume 221, Issue 1, pp 179–234 | Cite as

The boundary of the outer space of a free product

  • Camille HorbezEmail author
Article

Abstract

Let G be a countable group that splits as a free product of groups of the form G = G 1 *···* G k * F N , where F N is a finitely generated free group. We identify the closure of the outer space PO(G, {G 1,..., G k }) for the axes topology with the space of projective minimal, very small (G, {G 1,..., G k })-trees, i.e. trees whose arc stabilizers are either trivial, or cyclic, closed under taking roots, and not conjugate into any of the G i ’s, and whose tripod stabilizers are trivial. Its topological dimension is equal to 3N + 2k − 4, and the boundary has dimension 3N + 2k − 5. We also prove that any very small (G, {G 1,..., G k })-tree has at most 2N + 2k−2 orbits of branch points.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Bestvina and M. Feighn, Outer limits, preprint, available at http://andromeda.rutgers.edu/feighn/papers/outer.pdf, 1994.Google Scholar
  2. [2]
    M. Cohen and M. Lustig, Very small group actions on R-trees and Dehn twist automorphisms, Topology 34 (1995), 575–617.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Culler and J. Morgan, Group actions on R-trees, Proc. London Math. Soc. 55 (1987), 571–604.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. math. 84 (1986), 91–119.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    D. Gaboriau, Générateurs indépendants pour les systémes d’isométries de dimension un, Ann. Inst. Fourier 47 (1997), 101–122.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    D. Gaboriau and G. Levitt, The rank of actions on R-trees, Ann. Scient. c. Norm. Sup. 28 (1995), 549–570.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D. Gaboriau, G. Levitt and F. Paulin, Pseudogroups of isometries of R and Rips’ theorem on free actions on R-trees, Israel J. Math. 87 (1994), 403–428.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H. Gillet and P. Shalen, Dendrology of groups in low Q-ranks, J. Differential Geom. 32 (1990), 605–712.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    V. Guirardel, Approximations of stable actions on R-trees, Comment. Math. Helv. 73 (1998), 89–121.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    V. Guirardel, Limit groups and groups acting freely on Rn-trees, Geom. Topol. 8 (2004), 1427–1470.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    V. Guirardel, Actions of finitely generated groups on R-trees, Ann. Inst. Fourier 58 (2008), 159–211.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    V. Guirardel and G. Levitt, The outer space of a free product, Proc. London Math. Soc. 94 (2007), 695–714.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    C. Horbez, Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings, (2014), arXiv:1408.0544v2.zbMATHGoogle Scholar
  14. [14]
    C. Horbez, The Tits alternative for the automorphism group of a free product, (2014), arXiv:1408.0546v2.Google Scholar
  15. [15]
    C. Horbez, Spectral rigidity for primitive elements of F N, J. Group Theory 19 (2016), 55–123.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    H. Imanishi, On codimension one foliations defined by closed one forms with singularities, J. Math. Kyoto Univ. 19 (1979), 285–291.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Kurosh, Die Untergruppen der freien Produkte von beliebigen Gruppen, Math. Ann. 109 (1934), 647–660.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    G. Levitt, Graphs of actions on R-trees, Comment. Math. Helv. 69 (1994), 28–38.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    G. Levitt and F. Paulin, Geometric group actions on trees, Amer. J. Math. 119 (1997), 83–102.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J. Morgan, Λ-trees and their applications, Bull. Amer. Math. Soc. 26 (1992), 87–112.MathSciNetCrossRefGoogle Scholar
  21. [21]
    F. Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. math. 94 (1988), 53–80.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    F. Paulin, The Gromov topology on R-trees, Topol. Appl. 32 (1989), 197–221.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    J. Stallings, Topology of Finite Graphs, Invent. math. 71 (1983), 551–565.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2017

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques d’OrsayUniversité Paris SudOrsayFrance

Personalised recommendations