Skip to main content
Log in

An integral model structure and truncation theory for coherent group actions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this work we study the homotopy theory of coherent group actions from a global point of view, where we allow both the group and the space acted upon to vary. Using the model of Segal group actions and the model categorical Grothendieck construction we construct a model category encompassing all Segal group actions simultaneously. We then prove a global rectification result in this setting. We proceed to develop a general truncation theory for the model-categorical Grothendieck construction and apply it to the case of Segal group actions. We give a simple characterization of n-truncated Segal group actions and show that every Segal group action admits a convergent Postnikov tower built out of its n-truncations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Berger, Iterated wreath product of the simplex category and iterated loop spaces, Advances in Mathematics 213 (2007), 230–270.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Bergner, Adding inverses to diagrams encoding algebraic structures, Homology, Homotopy and Applications 10 (2008), 149–174.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Bergner, Erratum to “Adding inverses to diagrams encoding algebraic structures” and “Adding inverses to diagrams II: Invertible homotopy theories are spaces”, Homology, Homotopy and Applications 14 (2012), 287–291.

    Article  MATH  Google Scholar 

  4. G. Biedermann, On the homotopy theory of n-types, Homology, Homotopy and Applications 10 (2008), 305–325.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. K. Bousfield, The simplicial homotopy theory of iterated loop spaces, unpublished preprint (1992).

    Google Scholar 

  6. E. Dror, W. Dwyer and D. M. Kan, Equivariant maps which are self homotopy equivalences, Proceedings of the American Mathematical Society 80 (1980), 670–672.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. G. Dwyer and D. M. Kan, An obstruction theory for diagrams of simplicial sets, Indagationes Mathematicae 87 (1984), 139–146.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Goerss and R. Jardine, Simplicial Homotopy Theory, Progress in Mathematics, Vol. 174, Birkhäuser, Basel, 2009.

    Book  Google Scholar 

  9. V. Hinich, Dwyer–Kan localization revisited, Homology, Homotopy and Applications 18 (2016), 27–48.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. S. Hirschhorn, Model categories and their Localizations, Mathematical Surveys and Monographs, Vol. 99, American Mathematical Society, Providence, RI, 2003.

    Google Scholar 

  11. Y. Harpaz and M. Prasma, The Grothendieck construction for model categories, Advances in Mathematics 281 (2015), 1306–1363.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Jardine, Diagonal model structures, Theory and Applications of Categories 28 (2013), 250–268.

    MathSciNet  MATH  Google Scholar 

  13. D. M. Kan, A combinatorial definition of homotopy groups, Annals of Mathematics 67 (1958), 282–312.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Lurie, Higher Topos Theory, Annals of Mathematics Studies, Vol. 170, Princeton University Press, Princeton, NJ, 2009.

    Google Scholar 

  15. J. Lurie, Higher Algebra, available at http://www.math.harvard.edu/~lurie/papers/higheralgebra.pdf (2014).

    Google Scholar 

  16. T. Nikolaus, U. Schreiber and D. Stevenson, Principal ∞-bundles: General theory, Journal of Homotopy and Related Structures 10 (2015), 801–749.

    MathSciNet  MATH  Google Scholar 

  17. M. Prasma, Segal group actions, Theory and Applications of Categories 30 (2015), 1287–1305.

    MathSciNet  MATH  Google Scholar 

  18. D. G. Quillen, Homotopical Algebra, Lecture Notes in Mathematics, Vol. 43, Springer-Verlag, New York, 1967.

    Google Scholar 

  19. D. Quillen, Higher algebraic K-theory. I, in Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Institute, Seattle, WA, 1972), Lecture Notes in Mathematics, Vol. 341, Springer, Berlin, 1973, pp. 85–147.

    Google Scholar 

  20. C. Rezk, A model for the homotopy theory of homotopy theory, Transactions of the American Mathematical Society 353 (2001), 973–1007.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Rezk, S. Schwede and B. E. Shipley, Simplicial structures on model categories and functors, American Journal of Mathematics 123 (2001), 551–575.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Schwede, Global homotopy theory, preprint, available at http://www.math.uni-bonn.de/people/schwede/global.pdf.

  23. G. Segal, Categories and cohomology theories, Topology 13 (1974), 293–312.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Waldhausen, Algebraic K-theory of generalized free products, Annals of Mathematics 108 (1978), 135–256.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonatan Harpaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harpaz, Y., Prasma, M. An integral model structure and truncation theory for coherent group actions. Isr. J. Math. 221, 511–561 (2017). https://doi.org/10.1007/s11856-017-1551-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1551-6

Navigation