Skip to main content
Log in

Real zeroes of random polynomials, I. Flip-invariance, Turán’s lemma, and the Newton-Hadamard polygon

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We show that with high probability the number of real zeroes of a random polynomial is bounded by the number of vertices on its Newton–Hadamard polygon times the cube of the logarithm of the polynomial degree. A similar estimate holds for zeroes lying on any curve in the complex plane, which is the graph of a Lipschitz function in polar coordinates. The proof is based on the classical Turán lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bloch and G. Pólya, On the roots of certain algebraic equations, Proc. London Math. Soc. 33 (1932), 102–114.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Erdős and A. C. Offord, On the number of real roots of a random algebraic equation, Proc. London Math. Soc. (3) 6 (1956), 139–160.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. A. Ibragimov and N. B. Maslova, The mean number of real zeros of random polynomials. I. Coefficients with zero mean (Russian), Teor. Verojatnost. i Primenen. 16 (1971), 229–248; English transl.: Theor. Probability Appl. 16 (1971), 228–248; II. Coefficients with a nonzero mean, ibid, 495–503; English transl.: 485–493.

    MathSciNet  MATH  Google Scholar 

  4. I. A. Ibragimov and N. B. Maslova, The average number of real roots of random polynomials (Russian), Dokl. Akad. Nauk SSSR 199 (1971), 13–16; English transl.: Soviet Math. Dokl. 12 (1971), 1004–1008.

    MathSciNet  MATH  Google Scholar 

  5. I. Ibragimov and Dm. Zaporozhets, On distribution of zeros of random polynomials in complex plane, in Prokhorov and Contemporary Probability Theory, Springer Proc. Math. Stat., 33, Springer, Heidelberg, 2013, pp. 303–323.

    Chapter  Google Scholar 

  6. M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49 (1943), 314–320; A correction, ibid, 938.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. N. Kolmogorov, de M. P. Lévy, Ann. Inst. H. Poincaré 16 (1958), 27–34.

    MathSciNet  MATH  Google Scholar 

  8. J. E. Littlewood and A. C. Offord, On the number of real roots of a random algebraic equation, I, Journal London Math. Soc. 13 (1938), 288–295; II, Proc. Cambridge Phil Soc. 35 (1939), 133–148; III, Rec. Math. [Mat. Sbornik] N.S. 12(54) (1943). 277–286.

    Article  MATH  Google Scholar 

  9. B. F. Logan and L. A. Shepp, Real zeros of random polynomials, I, Proc. London Math. Soc. 18 (3) (1968), 29–35;II, ibid, 308–314.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., Providence, RI, 1994.

    Book  MATH  Google Scholar 

  11. F. Nazarov, Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type (Russian), Algebra & Analiz 5 (1993), no. 4, 3–66; Theory Probab. Appl. 55 (2011), 173–181.

  12. G. Pólya and G. Szegő, Problems and Theorems in Analysis II,Reprint of the 1976 English translation, Classics in Mathematics, Springer-Verlag, Berlin, 1998.

    Google Scholar 

  13. L. Shepp and K. Farahmand, Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients, Teor. Veroyatn. Primen. 55 (2010), 196–204; Theory Probab. Appl. 55 (2011), 173–181

  14. K. Söze, Real zeroes of random polynomials, II.Descartes’ rule of signs and anticoncentration on the symmetric group, Israel Journal of Mathematics, this volume.

  15. D. N. Zaporozhets, An example of a random polynomial with unusual behavior of the roots (Russian), Teor. Veroyatn. Primen. 50 (2005), 549–555; English transl.: Theory Probab. Appl. 50 (2006), 529–535.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Söze.

Additional information

To Ildar Ibragimov with admiration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Söze, K. Real zeroes of random polynomials, I. Flip-invariance, Turán’s lemma, and the Newton-Hadamard polygon. Isr. J. Math. 220, 817–836 (2017). https://doi.org/10.1007/s11856-017-1535-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1535-6

Navigation