Israel Journal of Mathematics

, Volume 220, Issue 2, pp 817–836

Real zeroes of random polynomials, I. Flip-invariance, Turán’s lemma, and the Newton-Hadamard polygon

Article
  • 63 Downloads

Abstract

We show that with high probability the number of real zeroes of a random polynomial is bounded by the number of vertices on its Newton–Hadamard polygon times the cube of the logarithm of the polynomial degree. A similar estimate holds for zeroes lying on any curve in the complex plane, which is the graph of a Lipschitz function in polar coordinates. The proof is based on the classical Turán lemma.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Bloch and G. Pólya, On the roots of certain algebraic equations, Proc. London Math. Soc. 33 (1932), 102–114.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    P. Erdős and A. C. Offord, On the number of real roots of a random algebraic equation, Proc. London Math. Soc. (3) 6 (1956), 139–160.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    I. A. Ibragimov and N. B. Maslova, The mean number of real zeros of random polynomials. I. Coefficients with zero mean (Russian), Teor. Verojatnost. i Primenen. 16 (1971), 229–248; English transl.: Theor. Probability Appl. 16 (1971), 228–248; II. Coefficients with a nonzero mean, ibid, 495–503; English transl.: 485–493.MathSciNetMATHGoogle Scholar
  4. [4]
    I. A. Ibragimov and N. B. Maslova, The average number of real roots of random polynomials (Russian), Dokl. Akad. Nauk SSSR 199 (1971), 13–16; English transl.: Soviet Math. Dokl. 12 (1971), 1004–1008.MathSciNetMATHGoogle Scholar
  5. [5]
    I. Ibragimov and Dm. Zaporozhets, On distribution of zeros of random polynomials in complex plane, in Prokhorov and Contemporary Probability Theory, Springer Proc. Math. Stat., 33, Springer, Heidelberg, 2013, pp. 303–323.CrossRefGoogle Scholar
  6. [6]
    M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49 (1943), 314–320; A correction, ibid, 938.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    A. N. Kolmogorov, de M. P. Lévy, Ann. Inst. H. Poincaré 16 (1958), 27–34.MathSciNetMATHGoogle Scholar
  8. [8]
    J. E. Littlewood and A. C. Offord, On the number of real roots of a random algebraic equation, I, Journal London Math. Soc. 13 (1938), 288–295; II, Proc. Cambridge Phil Soc. 35 (1939), 133–148; III, Rec. Math. [Mat. Sbornik] N.S. 12(54) (1943). 277–286.CrossRefMATHGoogle Scholar
  9. [9]
    B. F. Logan and L. A. Shepp, Real zeros of random polynomials, I, Proc. London Math. Soc. 18 (3) (1968), 29–35;II, ibid, 308–314.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., Providence, RI, 1994.CrossRefMATHGoogle Scholar
  11. [11]
    F. Nazarov, Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type (Russian), Algebra & Analiz 5 (1993), no. 4, 3–66; Theory Probab. Appl. 55 (2011), 173–181.Google Scholar
  12. [12]
    G. Pólya and G. Szegő, Problems and Theorems in Analysis II,Reprint of the 1976 English translation, Classics in Mathematics, Springer-Verlag, Berlin, 1998.Google Scholar
  13. [13]
    L. Shepp and K. Farahmand, Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients, Teor. Veroyatn. Primen. 55 (2010), 196–204; Theory Probab. Appl. 55 (2011), 173–181Google Scholar
  14. [14]
    K. Söze, Real zeroes of random polynomials, II.Descartes’ rule of signs and anticoncentration on the symmetric group, Israel Journal of Mathematics, this volume.Google Scholar
  15. [15]
    D. N. Zaporozhets, An example of a random polynomial with unusual behavior of the roots (Russian), Teor. Veroyatn. Primen. 50 (2005), 549–555; English transl.: Theory Probab. Appl. 50 (2006), 529–535.CrossRefGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2017

Authors and Affiliations

  1. 1.BronxUSA

Personalised recommendations