Skip to main content
Log in

Homology of braid groups, the Burau representation, and points on superelliptic curves over finite fields

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The (reduced) Burau representation V n of the braid group B n is obtained from the action of B n on the homology of an infinite cyclic cover of the disc with n punctures. In this paper, we calculate H *(B n ; V n ). Our topological calculation has the following arithmetic interpretation (which also has different algebraic proofs): the expected number of points on a random superelliptic curve of a fixed genus over F q is q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. V. I. Arnol’d, Certain topological invariants of algebrac functions, Trudy Moskov. Mat. Obšc. 21 (1970), 27–46.

    MathSciNet  Google Scholar 

  2. A. Bucur, C. David, B. Feigon and M. Lalín, Statistics for traces of cyclic trigonal curves over finite fields, Int. Math. Res. Not. IMRN (2010), 932–967.

    Google Scholar 

  3. T. Church, J. S. Ellenberg and B. Farb, Representation stability in cohomology and asymptotics for families of varieties over finite fields, in Algebraic topology: applications and new directions, Contemp. Math., Vol. 620, Amer. Math. Soc., Providence, RI, 2014, pp. 1–54.

    Google Scholar 

  4. T. Church and B. Farb, Representation theory and homological stability, Adv. Math. 245 (2013), 250–314.

    Article  MathSciNet  MATH  Google Scholar 

  5. W.-L. Chow, On the algebraical braid group, Ann. of Math. 49 (2) (1948), 654–658.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Callegaro, D. Moroni and M. Salvetti, Cohomology of Artin groups of type An,Bn and applications, in Groups, homotopy and configuration spaces, Geom. Topol. Monogr., Vol. 13, Geom. Topol. Publ., Coventry, 2008, pp. 85–104.

    Google Scholar 

  7. F. Cohen, The homology of Cn+1-spaces,n = 0, in The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer, Berlin, 1976, pp. 207–351.

    Google Scholar 

  8. J. Crisp and L. Paris, Artin groups of type B and D, Adv. Geom. 5 (2005), 607–636.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Cheong, M. M. Wood and A. Zaman, The distribution of points on superelliptic curves over finite fields, Proc. Amer. Math. Soc. 143 (2015), 1365–1375.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. David, Curves and zeta functions over finite fields, notes for the Arizona Winter School 2014: Arithmetic Statistics (2014).

    Google Scholar 

  11. C. De Concini, C. Procesi and M. Salvetti, Arithmetic properties of the cohomology of braid groups, Topology 40 (2001), 739–751.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, Vol. 569, Springer-Verlag, Berlin-New York, 1977, Séminaire de Géométrie Algébrique du Bois-Marie SGA 41øer2, Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier.

    Google Scholar 

  13. E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111–118.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Farb and J. Wolfson, Topology and arithmetic of resultants, II: the resultant= 1 hypersurface (with an appendix by c. cazanave), arXiv:1507.01283, to appear in Algebraic Geometry (2015).

    Google Scholar 

  15. B. Farb and J. Wolfson, Topology and arithmetic of resultants, I, New York J. Math. 22 (2016), 801–821.

    MathSciNet  MATH  Google Scholar 

  16. R. Godement, Topologie algébrique et théorie des faisceaux, Actualit’es Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13, Hermann, Paris, 1958.

    MATH  Google Scholar 

  17. P. Kurlberg and Z. Rudnick, The fluctuations in the number of points on a hyperelliptic curve over a finite field, J. Number Theory 129 (2009), 580–587.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Kassel and V. Turaev, Braid groups, Graduate Texts in Mathematics, Vol. 247, Springer, New York, 2008, With the graphical assistance of Olivier Dodane.

    MATH  Google Scholar 

  19. C. T. McMullen, Braid groups and Hodge theory, Math. Ann. 355 (2013), 893–946.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. A. Vasil’ev, Cohomology of braid groups and the complexity of algorithms, Funktsional. Anal. i Prilozhen. 22 (1988), 15–24, 96.

    MathSciNet  MATH  Google Scholar 

  21. N. Wahl and O. Randal-Williams, Homological stability for automorphism groups, arXiv:1409.3541 (2014).

    Google Scholar 

  22. M. Xiong, The fluctuations in the number of points on a family of curves over a finite field, J. Théor. Nombres Bordeaux 22 (2010), 755–769.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W. Homology of braid groups, the Burau representation, and points on superelliptic curves over finite fields. Isr. J. Math. 220, 739–762 (2017). https://doi.org/10.1007/s11856-017-1534-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1534-7

Navigation