Israel Journal of Mathematics

, Volume 220, Issue 2, pp 791–801

Polynomial identities for matrices over the Grassmann algebra



We determine minimal Cayley–Hamilton and Capelli identities for matrices over a Grassmann algebra of finite rank. For minimal standard identities, we give lower and upper bounds on the degree. These results improve on upper bounds given by L. Márki, J. Meyer, J. Szigeti and L. van Wyk in a recent paper.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. S. Amitsur and J. Levitzki, Minimal identities for algebras, Proc. Amer. Math. Soc. 1 (1950), 449–463.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M. Domokos, Eulerian polynomial identities and algebras satisfying a standard identity, J. Algebra 169 (1994), 913–928.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    A. Giambruno and M. Zaicev, Polynomial identities and asymptotic methods, Mathematical Surveys and Monographs, Vol. 122, American Mathematical Society, Providence, RI, 2005.CrossRefMATHGoogle Scholar
  4. [4]
    L. Márki, J. Meyer, J. Szigeti and L. van Wyk, Matrix representations of finitely generated Grassmann algebras and some consequences, Israel J. Math. 208 (2015), 373–384.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2017

Authors and Affiliations

  1. 1.Department of Algebra and Number TheoryEötvös Loránd UniversityBudapestHungary
  2. 2.Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations