Israel Journal of Mathematics

, Volume 220, Issue 2, pp 605–615

Moving homology classes in finite covers of graphs

Article
  • 57 Downloads

Abstract

Let YX be a finite normal cover of a wedge of n ≥ 3 circles. We prove that for any nonzero vH1(Y; Q) there exists a lift \(\widetilde F\) to Y of a basepoint-preserving homotopy equivalence F: XX such that the set of iterates \(\left\{ {{{\widetilde F}^d}\left( v \right)} \right\}:d \in \mathbb{Z} \subseteq {H_1}\left( {Y,\mathbb{Q}} \right)\) is infinite. The main achievement of this paper is the use of representation theory to prove the existence of a purely topological object that seems to be inaccessible via topology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CW34]
    C. Chevalley and A. Weil, Über das verhalten der integrale 1. gattung bei automorphismen des funktionenkörpers, Abh. Math. Sem. Univ. Hamburg 10 (1934), 358–361.MathSciNetCrossRefMATHGoogle Scholar
  2. [GL09]
    F. Grunewald and A. Lubotzky, Linear representations of the automorphism group of a free group, Geom. Funct. Anal. 18 (2009), 1564–1608.MathSciNetCrossRefMATHGoogle Scholar
  3. [GLLM15]
    F. Grunewald, M. Larsen, A. Lubotzky and J. Malestein, Arithmetic quotients of the mapping class group, Geom. Funct. Anal. 25 (2015), 1493–1542.MathSciNetCrossRefMATHGoogle Scholar
  4. [Loo97]
    E. Looijenga, Prym representations of mapping class groups, Geom. Dedicata 64 (1997), 69–83.MathSciNetCrossRefMATHGoogle Scholar
  5. [Mat15]
    C. Matheus, Some comments on the conjectures of Ivanov and Putman–Wieland, https://matheuscmss.wordpress.com/2015/04/24/some-comments-onthe- conjectures-of-ivanov-and-putman-wieland/(2015).Google Scholar
  6. [McM13]
    C. T. McMullen, Braid groups and Hodge theory, Math. Ann. 355 (2013), 893–946.MathSciNetCrossRefMATHGoogle Scholar
  7. [PW13]
    A. Putman and B. Wieland, Abelian quotients of subgroups of the mappings class group and higher Prym representations, J. Lond.Math. Soc. 88 (2) (2013), 79–96.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA
  2. 2.Mathematisches InstitutRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations