Advertisement

Israel Journal of Mathematics

, Volume 218, Issue 1, pp 489–510 | Cite as

The asymmetry of complete and constant width bodies in general normed spaces and the Jung constant

Article

Abstract

In this paper we state a one-to-one connection between the maximal ratio of the circumradius and the diameter of a body (the Jung constant) in an arbitrary Minkowski space and the maximal Minkowski asymmetry of the complete bodies within that space. This allows to generalize and unify recent results on complete bodies and to derive a necessary condition on the unit ball of the space, assuming a given body to be complete. Finally, we state several corollaries, e.g. concerning the Helly dimension or the Banach–Mazur distance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Alexander, The width and diameter of a simplex, Geometriae Dedicata 6, (1977) 87–94.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    I. Bárány, M. Katchalski and J. Pach, Quantitative Helly-type theorems, Proc. Amer. Math. Soc. 86, (1982) 109–114.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    I. Bárány, M. Katchalski and J. Pach, Helly’s theorem with volumes, Amer. Math. Monthly 91, (1984) 362–365.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    A. Belloni and R. M. Freund, On the symmetry function of a convex set, Math. Program. 111, (2008) 57–93.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    U. Betke and M. Henk, Estimating sizes of a convex body by successive diameters and widths, Mathematika 39, (1992) 247–257.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    U. Betke and M. Henk, A generalization of Steinhagen’s theorem, Abh. Math. Sem. Univ. Hamburg 63, (1993) 165–176.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    F. Bohnenblust, Convex regions and projections in Minkowski spaces, Ann. ofMath. 39 (2), (1938) 301–308.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    V. Boltyanski and H. Martini, Jung’s theorem for a pair of Minkowski spaces, Adv. Geom. 6, (2006) 645–650.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    T. Bonnesen and W. Fenchel, Theory of convex bodies, BCS Associates, Moscow, ID, 1987, Translated from the German and edited by L. Boron, C. Christenson and B. Smith.Google Scholar
  10. [10]
    K. Böröczky, M. A. Hernández Cifre and G. Salinas, Optimizing area and perimeter of convex sets for fixed circumradius and inradius, Monatsh. Math. 138, (2003) 95–110.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    R. Brandenberg, Radii of convex bodies, Ph.D. thesis, Zentrum Mathematik, Technische Universität München, 2002.Google Scholar
  12. [12]
    R. Brandenberg, Radii of regular polytopes, Discrete Comput. Geom. 33, (2005) 43–55.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    R. Brandenberg and S. König, No dimension-independent core-sets for containment under homothetics, Discrete Comput. Geom. 49, (2013) 3–21.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    R. Brandenberg and S. König, Sharpening geometric inequalities using computable symmetry measures, Mathematika 61, (2015) 559–580.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    L. Caspani and P. L. Papini, On constant width sets in Hilbert spaces and around, J. Convex Anal. 22, (2015) 889–900.MathSciNetMATHGoogle Scholar
  16. [16]
    L. Danzer, B. Grünbaum and V. Klee, Helly’s theorem and its relatives, in Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 101–180.Google Scholar
  17. [17]
    V. L. Dolnikov, The Jung constant in ln 1, Mat. Zametki 42, (1987) 519–526, 622.MathSciNetGoogle Scholar
  18. [18]
    H. G. Eggleston, Measure of asymmetry of convex curves of constant width and restricted radii of curvature, Quart. J. Math., Oxford Ser. 3 (2) (1952), 63–72.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    H. G. Eggleston, Sets of constant width, in Convexity, Cambridge Tracts in Mathematics and Mathematical Physics, No. 47, Cambridge University Press, New York, 1958, pp. 122–135.Google Scholar
  20. [20]
    H. G. Eggleston, Sets of constant width in finite dimensional Banach spaces, Israel J. Math. 3, (1965) 163–172.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    B. González Merino, On the ratio between successive radii of a symmetric convex body, Math. Inequal. Appl. 16, (2013) 569–576.MathSciNetMATHGoogle Scholar
  22. [22]
    P. Gritzmann and V. Klee, Inner and outer j-radii of convex bodies in finite-dimensional normed spaces, Discrete Comput. Geom. 7, (1992) 255–280.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    H. Groemer, On complete convex bodies, Geom. Dedicata 20, (1986) 319–334.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    B. Grünbaum, Measures of symmetry for convex sets, in Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 233–270.Google Scholar
  25. [25]
    Q. Guo and S. Kaijser, Approximation of convex bodies by convex bodies, Northeast. Math. J. 19, (2003) 323–332.MathSciNetMATHGoogle Scholar
  26. [26]
    M. Henk, A generalization of Jung’s theorem, Geom. Dedicata 42, (1992) 235–240.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    M. Henk and M. A. Hernández Cifre, Intrinsic volumes and successive radii, J. Math. Anal. Appl. 343, (2008) 733–742.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    H. Jin, Asymmetry for convex body of revolution, Wuhan Univ. J. Nat. Sci. 20, (2015) 97–100.MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    H. Jin and Q. Guo, Asymmetry of convex bodies of constant width, Discrete Comput. Geom. 47, (2012) 415–423.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    H. Jin and Q. Guo, A note on the extremal bodies of constant width for the Minkowski measure, Geom. Dedicata 164, (2013) 227–229.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    H. Jung, Über die kleinste Kugel, die eine räumliche Figur einschliesst, J. Reine Angew. Math. 123, (1901) 241–257.MathSciNetMATHGoogle Scholar
  32. [32]
    K. Leichtweiss, Zwei Extremalprobleme der Minkowski-Geometrie, Math. Z. 62, (1955) 37–49.MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    H. Martini and S. Wu, Complete sets need not be reduced in Minkowski spaces, Beitr. Algebra Geom. 56, (2015) 533–539.MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    J. P. Moreno, P. L. Papini and R. R. Phelps, Diametrically maximal and constant width sets in Banach spaces, Canad. J. Math. 58, (2006) 820–842.MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    J. P. Moreno and R. Schneider, Diametrically complete sets in Minkowski spaces, Israel J. Math. 191, (2012) 701–720.MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    J. P. Moreno and R. Schneider, Structure of the space of diametrically complete sets in a Minkowski space, Discrete Comput. Geom. 48, (2012) 467–486.MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    G. Y. Perelman, On the k-radii of a convex body, Sibirsk. Mat. Zh. 28, (1987) 185–186.MathSciNetGoogle Scholar
  38. [38]
    G. T. Sallee, Sets of constant width, the spherical intersection property and circumscribed balls, Bull. Austral. Math. Soc. 33, (1986) 369–371.MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    L. Santaló, Sobre los sistemas completos de desigualdades entre tres elementos de una figura convexa planas, Math. Notae 17, (1961) 82–104.MathSciNetGoogle Scholar
  40. [40]
    R. Schneider, Stability for some extremal properties of the simplex, J. Geom. 96, (2009) 135–148.MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    R. Schneider, Convex bodies: the Brunn-Minkowski theory, expanded ed., Encyclopedia of Mathematics and its Applications, Vol. 151, Cambridge University Press, Cambridge, 2014.Google Scholar
  42. [42]
    P. R. Scott, Sets of constant width and inequalities, Quart. J. Math. Oxford Ser. 32 (2), (1981) 345–348.MathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    V. P. Soltan, A theorem on full sets, Dokl. Akad. Nauk SSSR 234, (1977) 320–322.MathSciNetGoogle Scholar
  44. [44]
    P. Steinhagen, Über die größte Kugel in einer konvexen Punktmenge, Abh. Math. Sem. Univ. Hamburg 1, (1922) 15–26.MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    B. Sz.-Nagy, Ein Satz über Parallelverschiebungen konvexer Körper, Acta Sci. Math. Szeged 15, (1954) 169–177.MathSciNetMATHGoogle Scholar
  46. [46]
    S. Vrécica, A note on sets of constant width, Publ. Inst. Math. (Beograd) (N.S.) 29(43), (1981) 289–291.MathSciNetMATHGoogle Scholar
  47. [47]
    D. Yost, Irreducible convex sets, Mathematika 38, (1991) 134–155.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2017

Authors and Affiliations

  1. 1.Zentrum MathematikTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations