Israel Journal of Mathematics

, Volume 218, Issue 1, pp 445–487 | Cite as

Exotic cluster structures on SLn with Belavin–Drinfeld data of minimal size, II. Correspondence between cluster structures and Belavin–Drinfeld triples

Article

Abstract

Using the notion of compatibility between Poisson brackets and cluster structures in the coordinate rings of simple Lie groups, Gekhtman, Shapiro and Vainshtein conjectured the existence of a cluster structure for each Belavin-Drinfeld solution of the classical Yang-Baxter equation compatible with the corresponding Poisson-Lie bracket on the simple Lie group. Poisson-Lie groups are classified by the Belavin-Drinfeld classification of solutions to the classical Yang-Baxter equation. For any non-trivial Belavin-Drinfeld data of minimal size for SLn, the companion paper constructed a cluster structure with a locally regular initial seed, which was proved to be compatible with the Poisson bracket associated with that Belavin-Drinfeld data.

This paper proves the rest of the conjecture: the corresponding upper cluster algebra \(\overline {{A_\mathbb{C}}} \left( C \right)\) is naturally isomorphie to O (SLn), the torus determined by the BD triple generates the action of \({\left( {\mathbb{C}*} \right)^{2{k_T}}}\) on C (SLn), and the correspondence between Belavin-Drinfeld classes and cluster structures is one to one.

References

  1. [1]
    A. A. Belavin and V. G. Drinfel'd, Solutions of the classical Yang-Baxter equation for simple Lie algebras, Funktsional. Anal, i Prilozhen. 16, (1982) 1–29, 96.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    A. Berenstein, S. Fomin and A. Zelevinsky, Cluster algebras. 111. Upper bounds and double Bruhat cells, Duke Math. J. 126, (2005) 1–52.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    D. M. Bressoud, Proofs and confirmations, MAA Spectrum, Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge, 1999, The story of the alternating sign matrix conjecture.CrossRefGoogle Scholar
  4. [4]
    V. Chari and A. Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1994.MATHGoogle Scholar
  5. [5]
    I. Eisner, Exotic cluster structures on SLn with Belavin Drinfeld data of minimal size, I. The structure, this volume.Google Scholar
  6. [6]
    I. Eisner, Exotic cluster structures on SL5, Journal of Physics A: Mathematical and Theoretical 47, (2014) 474002.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15, (2002) 497–529 (electronic).MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    S. Fomin and A. Zelevinsky, Cluster algebras. 11. Finite type classification, Invent. Math. 154, (2003) 63–121.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J. 3, (2003) 899–934, 1199, {Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday}.MathSciNetMATHGoogle Scholar
  10. [10]
    M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, Vol. 167, American Mathematical Society, Providence, RI, 2010.CrossRefMATHGoogle Scholar
  11. [11]
    M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster structures on simple complex Lie groups and Belavin-Drinfeld classification, Mosc. Math. J. 12, (2012) 293–312, 460.MathSciNetMATHGoogle Scholar
  12. [12]
    M. Gekhtman, M. Shapiro and A. Vainshtein, Exotic cluster structures on SLn: the cremmer-gervais case, arXiv preprint arXiv:1307.1020 (2013).Google Scholar
  13. [13]
    M. Gekhtman, M. Shapiro and A. Vainshtein, Cremmer-Gervais cluster structure on SLn, Proc. Natl. Acad. Sci. USA 111, (2014) 9688–9695.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    J. S. Scott, Grassmannians and cluster algebras, Proc. London Math. Soc. 92 (3), (2006) 345–380.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2017

Authors and Affiliations

  1. 1.Department of MathematicsTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations