Skip to main content
Log in

On a generalization of the Hadwiger–Nelson problem

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

For a field F and a quadratic form Q defined on an n-dimensional vector space V over F, let QG Q , called the quadratic graph associated to Q, be the graph with the vertex set V where vertices u,wV form an edge if and only if Q(vw) = 1. Quadratic graphs can be viewed as natural generalizations of the unit-distance graph featuring in the famous Hadwiger–Nelson problem. In the present paper, we will prove that for a local field F of characteristic zero, the Borel chromatic number of QG Q is infinite if and only if Q represents zero non-trivially over F. The proof employs a recent spectral bound for the Borel chromatic number of Cayley graphs, combined with an analysis of certain oscillatory integrals over local fields. As an application, we will also answer a variant of question 525 proposed in the 22nd British Combinatorics Conference 2009 [6].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Akbari, M. Jamaali and S. A. Seyed Fakhari, The clique numbers of regular graphs of matrix algebras are finite, Linear Algebra Appl. 431 (2009), 1715–1718.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008), 2706–2719.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Bachoc, E. DeCorte, F. M. de Oliveira Filho and F. Vallentin, Spectral bounds for the independence ratio and the chromatic number of an operator, Israel J. Math. 202 (2014), 227–254.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Bachoc, G. Nebe, F. M. de Oliveira Filho and F. Vallentin, Lower bounds for measurable chromatic numbers, Geom. Funct. Anal. 19 (2009), 645–661.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Bukh, Measurable sets with excluded distances, Geom. Funct. Anal. 18 (2008), 668–697.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. J. Cameron, Research problems from the BCC22, Discrete Math. 311 (2011), 1074–1083.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. M. de Oliveira Filho and F. Vallentin, Fourier analysis, linear programming, and densities of distance avoiding sets in Rn, J. Eur. Math. Soc. (JEMS) 12 (2010), 1417–1428.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. J. Falconer, The realization of distances in measurable subsets covering Rn, J. Combin. Theory Ser. A 31 (1981), 184–189.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. B. Folland, Real analysis, second ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999, Modern techniques and their applications, A Wiley-Interscience Publication.

    MATH  Google Scholar 

  10. J. Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 322, Springer-Verlag, Berlin, 1999, Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder.

    Book  MATH  Google Scholar 

  11. W. Rudin, Fourier analysis on groups, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1990, Reprint of the 1962 original, A Wiley-Interscience Publication.

    Book  MATH  Google Scholar 

  12. P. J. Sally, Jr. and M. H. Taibleson, Special functions on locally compact fields, Acta Math. 116 (1966), 279–309.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. J. Sally, Jr., An introduction to p-adic fields, harmonic analysis and the representation theory of SL2, Lett. Math. Phys. 46 (1998), 1–47.

    Article  MathSciNet  MATH  Google Scholar 

  14. J.-P. Serre, A course in arithmetic, Springer-Verlag, New York-Heidelberg, 1973, Translated from the French, Graduate Texts in Mathematics, No. 7.

    Book  MATH  Google Scholar 

  15. A. Soifer, The mathematical coloring book, Springer, New York, 2009, Mathematics of coloring and the colorful life of its creators, With forewords by Branko Grünbaum, Peter D. Johnson, Jr. and Cecil Rousseau.

    MATH  Google Scholar 

  16. A. Soifer and S. Shelah, Axiom of choice and chromatic number: examples on the plane, J. Combin. Theory Ser. A 105 (2004), 359–364.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, Vol. 43, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.

    MATH  Google Scholar 

  19. L. A. Székely, Erdős on unit distances and the Szemerédi-Trotter theorems, in Paul Erdős and his mathematics, II (Budapest, 1999), Bolyai Soc. Math. Stud., Vol. 11, János Bolyai Math. Soc., Budapest, 2002, pp. 649–666.

    Google Scholar 

  20. M. H. Taibleson, Fourier analysis on local fields, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975.

    MATH  Google Scholar 

  21. D. R. Woodall, Distances realized by sets covering the plane, J. Combinatorial Theory Ser. A 14 (1973), 187–200.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bardestani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardestani, M., Mallahi-Karai, K. On a generalization of the Hadwiger–Nelson problem. Isr. J. Math. 217, 313–335 (2017). https://doi.org/10.1007/s11856-017-1448-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1448-4

Navigation