Skip to main content
Log in

On the quantitative asymptotic behavior of strongly nonexpansive mappings in banach and geodesic spaces

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We give explicit rates of asymptotic regularity for iterations of strongly nonexpansive mappings T in general Banach spaces as well as rates of metastability (in the sense of Tao) in the context of uniformly convex Banach spaces when T is odd. This, in particular, applies to linear norm-one projections as well as to sunny nonexpansive retractions. The asymptotic regularity results even hold for strongly quasi-nonexpansive mappings (in the sense of Bruck), the addition of error terms and very general metric settings. In particular, we get the first quantitative results on iterations (with errors) of compositions of metric projections in CAT(ĸ)-spaces (ĸ > 0). Under an additional compactness assumption we obtain, moreover, a rate of metastability for the strong convergence of such iterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Ariza-Ruiz, A. Fernández-León, G. López-Acedo and A. Nicolae, Chebyshev sets in geodesic spaces, J. Approx. Theory 207 (2016), 265–282.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Ariza-Ruiz, L. Leuştean and G. López-Acedo, Firmly nonexpansive mappings in classes of geodesic spaces, Trans. Amer. Math. Soc. 366 (2014), 4299–4322.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Ariza-Ruiz, G. López-Acedo and A. Nicolae, The asymptotic behavior of the composition of firmly nonexpansive mappings, J. Optim. Theory Appl. 167 (2015), 409–429.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.-B. Baillon, R. E. Bruck and S. Reich, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math. 4 (1978), 1–9.

    MathSciNet  MATH  Google Scholar 

  5. H. Bauschke, E. MatouŠková and S. Reich, Projections and proximal point methods: convergence results and counterexamples Nonlinear Anal. 56 (2004), 715–738.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201–225.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973), 341–355.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. E. Bruck, Random products of contractions in metric and Banach spaces, J. Math. Anal. Appl. 88 (1982), 319–332.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math. 3 (1977), 459–470.

    MathSciNet  MATH  Google Scholar 

  10. A. Cegielski, Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in Mathematics 2057 Springer, Heidelberg, 2012.

    MATH  Google Scholar 

  11. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, 83. Marcel Dekker, Inc., New York, 1984, ix+170 pp.

    MATH  Google Scholar 

  12. R. Espínola and A. Fernández-León, CAT-spaces, weak convergence and fixed points, J. Math. Anal. Appl. 353 (2009), 410–427.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv. 70 (1995), 659–673.

    Article  MathSciNet  MATH  Google Scholar 

  14. U. Kohlenbach, Sl Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc. 357 (2005), 89–128.

    Article  MathSciNet  MATH  Google Scholar 

  15. U. Kohlenbach, Applied Proof Theory: Proof Interpretations and their Use in Mathematics, Springer Monographs in Mathematics, Springer Heidelberg–Berlin, 2008, xx+536#pp.

    MATH  Google Scholar 

  16. U. Kohlenbach, On the asymptotic behavior of odd operators, J. Math. Anal. Appl. 382 (2011), 615–620.

    Article  MathSciNet  MATH  Google Scholar 

  17. U. Kohlenbach and B. Lambov, Bounds on iterations of asymptotically quasinonexpansive mappings, in Proc. International Conference on Fixed Point Theory, (J. G-Falset, E. L-Fuster, B. Sims eds.), Valencia 2003, Yokohama Press, 2004, pp. 143–172.

    Google Scholar 

  18. U. Kohlenbach, L. Leuştean and A. Nicolae, Quantitative results of Fejér monotone sequences, (2014), preprint. arXiv:1412.5563, submitted.

    Google Scholar 

  19. E. Kopecká and S. Reich, Nonexpansive retracts in Banach spaces, Banach Center Publications 77 (2007), 161–174.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Kreisel, On the interpretation of non-finitist proofs,part I, J. Symbolic Logic 16 (1951), 241–267.

    MathSciNet  MATH  Google Scholar 

  21. G. Kreisel, On the interpretation of non-finitist proofs, part II: Interpretation of number theory, applications, J. Symbolic Logic 17 (1952), 43–58.

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Leuştean, A quadratic rate of asymptotic regularity for CAT(0)-spaces, J. Math. Anal. Appl. 325 (2007), 386–399.

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Leuştean, Nonexpansive iterations in uniformly convex W-hyperbolic spaces, in Nonlinear Analysis and Optimization I. Nonlinear Analysis, Contemporary Mathematics 513, American Mathematical Society, Providence, RI, (2010), pp. 193–210.

    Google Scholar 

  24. A. Nicolae, Asymptotic behavior of averaged and firmly nonexpansive mappings in geodesic spaces, Nonlinear Anal. 87 (2013), 102–115.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Reich, The alternating algorithm of von Neumann in the Hilbert ball, Dynam. Systems Appl. 2 (1993), 21–25.

    MathSciNet  MATH  Google Scholar 

  26. S. Reich and I. Shafrir, The asymptotic behavior of firmly nonexpansive mappings, Proc. Amer. Math. Soc. 101, (1987), 246–250.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15 (1990), 537–558.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Tao, Soft analysis, hard analysis, and the finite convergence principle, Essay posted May 23, 2007. Appeared in: T. Tao, Structure and Randomness: Pages from Year One of a Mathematical Blog, American Mathematical Society Providence, RI, 2008, 298 pp.

    Google Scholar 

  29. T. Tao, Norm convergence of multiple ergodic averages for commuting transformations, Ergodic Theory Dynam. Systems 28 (2008), 657–688.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Wittmann, Mean ergodic theorems for nonlinear operators, Proc. Amer. Math. Soc. 108 (1990), 781–788.

    Article  MathSciNet  MATH  Google Scholar 

  31. I. Yamada, M. Yukawa and M. Yamagishi, Minimizing the Moreau envelope of nonsmooth convex functions over the fixed point set of certain quasi-nonexpansive mappings, in Fixed-Point Algorithms for Inverse Problems in Science and Engineering (H. H. Bauschke et al. eds.), Springer Optimization and Its Applications 49, Springer, Berlin, 2011, pp. 345–390.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Kohlenbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohlenbach, U. On the quantitative asymptotic behavior of strongly nonexpansive mappings in banach and geodesic spaces. Isr. J. Math. 216, 215–246 (2016). https://doi.org/10.1007/s11856-016-1408-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1408-4

Navigation