Skip to main content
Log in

Infinite-dimensional diagonalization and semisimplicity

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We characterize the diagonalizable subalgebras of End(V), the full ring of linear operators on a vector space V over a field, in a manner that directly generalizes the classical theory of diagonalizable algebras of operators on a finite-dimensional vector space. Our characterizations are formulated in terms of a natural topology (the “finite topology”) on End(V), which reduces to the discrete topology in the case where V is finite-dimensional. We further investigate when two subalgebras of operators can and cannot be simultaneously diagonalized, as well as the closure of the set of diagonalizable operators within End(V). Motivated by the classical link between diagonalizability and semisimplicity, we also give an infinite-dimensional generalization of the Wedderburn–Artin theorem, providing a number of equivalent characterizations of left pseudocompact, Jacoboson semisimple rings that parallel various characterizations of artinian semisimple rings. This theorem unifies a number of related results in the literature, including the structure of linearly compact, Jacobson semsimple rings and cosemisimple coalgebras over a field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bourbaki, Elements of mathematics. General Topology. Part 1, Hermann, Paris; Addison–Wesley Publishing Co., Reading, Mass.–London–Don Mills, Ont., 1966.

    MATH  Google Scholar 

  2. N. Bourbaki, Éléments de mathématique. Algèbre. Chapitres 4 à 7, Lecture Notes in Mathematics, Vol. 864, Masson, Paris, 1981.

    MATH  Google Scholar 

  3. S. Dăscălescu, C. Năstăsescu and Ş. Raianu, Hopf Algebras: An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 235, Marcel Dekker, Inc., New York, 2001.

  4. P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.

    MathSciNet  MATH  Google Scholar 

  5. C. Heunen, Characterizations of categories of commutative C*–subalgebras, Comm. Math. Phys. 331 (2014), 215–238.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. C. Iovanov, Co–Frobenius coalgebras, J. Algebra 303 (2006), 146–153.

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Kaplansky, Topological rings, Amer. J. Math. 69 (1947), 153–183.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. L. Kelley, General Topology, D. Van Nostrand Company, Inc., Toronto–New York–London, 1955.

    MATH  Google Scholar 

  9. T. Y. Lam, A First Course in Noncommutative Rings, second ed., Graduate Texts in Mathematics, Vol. 131, Springer–Verlag, New York, 2001.

    Book  MATH  Google Scholar 

  10. S. Mac Lane, Categories for the Working Mathematician, second ed., Graduate Texts in Mathematics, Vol. 5, Springer–Verlag, New York, 1998.

    MATH  Google Scholar 

  11. D. E. Radford, Hopf Algebras, Series on Knots and Everything, Vol. 49, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.

    Google Scholar 

  12. I. E. Segal, Decompositions of operator algebras. II. Multiplicity theory, Mem. Amer. Math. Soc. 9 (1951).

  13. D. Simson, Coalgebras, comodules, pseudocompact algebras and tame comodule type, Colloq. Math. 90 (2001), 101–150.

    MathSciNet  MATH  Google Scholar 

  14. B. Stenström, Rings of Quotients: An Introduction to Methods of Ring Theory, Die Grundlehren der Mathematischen Wissenschaften, Band 217, Springer–Verlag, New York–Heidelberg, 1975.

    Book  MATH  Google Scholar 

  15. S. Warner, Topological Rings, North–Holland Mathematics Studies, Vol. 178, North–Holland Publishing Co., Amsterdam, 1993.

    MATH  Google Scholar 

  16. D. Zelinsky, Rings with ideal nuclei, Duke Math. J. 18 (1951), 431–442.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Zelinsky, Linearly compact modules and rings, Amer. J. Math. 75 (1953), 79–90.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miodrag C. Iovanov.

Additional information

Iovanov was partially supported by the UEFISCDI [grant number PN-II-ID-PCE- 2011-3-0635], contract no. 253/5.10.2011 of CNCSIS.

Reyes was supported by NSF grant DMS-1407152.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iovanov, M.C., Mesyan, Z. & Reyes, M.L. Infinite-dimensional diagonalization and semisimplicity. Isr. J. Math. 215, 801–855 (2016). https://doi.org/10.1007/s11856-016-1395-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1395-5

Navigation