Skip to main content
Log in

A limit theorem for continuous selectors

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Any (measurable) function K from Rn to R defines an operator K acting on random variables X by K(X) = K(X 1,..., X n), where the X j are independent copies of X. The main result of this paper concerns continuous selectors H, continuous functions defined in Rn and such that H(x 1, x 2,..., x n) ∈ {x 1, x 2,..., x n}. For each such continuous selector H (except for projections onto a single coordinate) there is a unique point ωH in the interval (0, 1) so that, for any random variable X, the iterates H (N) acting on X converge in distribution as N → ∞ to the ωH-quantile of X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Binmore, Fun and Games. A Text on Game Theory, Houghton Mifflin, Boston, MA, 1991.

    MATH  Google Scholar 

  2. S. Boucheron, G. Lugosi and P. Massart, Concentration Inequalities. A Nonasymptotic Theory of Independence, Oxford University Press, Oxford, 2013.

    Book  MATH  Google Scholar 

  3. B. Efron and C. Stein, The jackknife estimate of variance, The Annals of Statistics 9 (1981), 586–596.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Ellis, Almost isoperimetric subsets of the discrete cube, Combinatorics, Probability and Computing 20 (2011), 363–380.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Embrechts and M. Hofert, A note on generalized inverses, Mathematical Methods of Operations Research 77 (2013), 423–432.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. S. Evans and L. J. Schulman, Signal propagation and noisy circuits, IEEE Transactions on Information Theory 45 (1999), 2367–2373.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Grimmett, Percolation, Second edition, Grundlehren der Mathematischen Wissenschaften, Vol. 321, Springer, Berlin, 1999.

    Book  MATH  Google Scholar 

  8. E. Mossel, J. Neeman and O. Tamuz, Majority dynamics and aggregation of information in social networks, Autonomous Agents and Multi-Agent Systems 28 (2014), 408–429.

    Article  Google Scholar 

  9. L. Russo, On the critical percolation probabilities, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 56 (1981), 229–237.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Steele, An Efron–Stein inequality for nonsymmetric statistics, The Annals of Statistics 14 (1986), 753–758.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. G. Valiant, Short monotone formulae for the majority function, Journal of Algorithms 5 (1984), 363–366.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco Durango or María J. González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durango, F., Fernández, J.L., Fernández, P. et al. A limit theorem for continuous selectors. Isr. J. Math. 214, 983–994 (2016). https://doi.org/10.1007/s11856-016-1369-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1369-7

Navigation