Abstract
We compute the F p -dimension of an n-th graded piece G (n)/G(n+1) of the Zassenhaus filtration for various finitely generated pro-p-groups G. These groups include finitely generated free pro-p-groups, Demushkin pro-p-groups and their free pro-p products. We provide a unifying principle for deriving these dimensions.
This is a preview of subscription content, access via your institution.
References
E. Becker, Euklidische Körper und euklidische Hüllen von Körpern, Journal für die Reine und Angewandte Mathematik 268/269 (1974), 41–52.
E. Becker, Hereditarily-Pythagorean Fields and Orderings of Higher Level, Monografías de matemática, Vol. 29, Instituto de Matemática Pura e Aplicada, Rio de Janero, 1978.
S. K. Chebolu, I. Efrat and J. Minác, Quotients of absolute Galois groups which determine the entire Galois cohomology, Mathematische Annalen 352 (2012), 205–221.
S. P. Demushkin, The group of the maximum p-extension of a local field, Izvestiya Akademii Nauk SSSR. Seriya Matematichesjaya 25 (1961), 329–346.
S. P. Demushkin, On 2-extensions of a local field, Sibirskii Matematicheskii Zhurnal 4 (1963), 951–955.
J. D. Dixon, M. P. F. Du Sautoy, A. Mann and D. Segal, Analytic pro-p Groups, second edition, Cambridge Studies in Advanced Mathematics, Vol. 61, Cambridge University Press, Cambridge, 1999.
I. Efrat, The Zassenhaus filtration, Massey products, and representations of profinite groups, Advances in Mathematics 263 (2014), 389–411.
I. Efrat, Filtrations of free groups as intersections, Archiv der Mathematik 103 (2014), 411–420.
I. Efrat and D. Haran, On Galois groups over Pythagorean and semi-real closed fields, Israel Journal of Mathematics 85 (1994), 57–78.
I. Efrat and J. Minác, Galois groups and cohomological functors, Transactions of the American Mathematical Society, to appear. arXiv:1103.1508.
M. Ershov, Kazhdan quotients of Golod-Shafarevich groups, Proceedings of the London Mathematical Society 102 (2011), 599–636.
P. Forré, Strongly free sequences and pro-p-groups of cohomological dimension 2, Journal für die Reine und Angewandte Mathematik 658 (2011), 173–192.
J. Gärtner, Mild pro-p-groups with trivial cup product, PhD thesis, Universität Heidelberg, 2011.
M. Hall, Jr., A basis for free Lie rings and higher commutators in free groups, Proceedings of the American Mathematical Society 1 (1950), 575–581.
D. Haran, Closed subgroups of G(Q) with involutions, Journal of Algebra 129 (1990), 393-411.
M. Hartl, On Fox and augmentation quotients of semidirect products, Journal of Algebra 324 (2010), 3276–3307.
H. Koch, Galois Theory of p-Extensions, Springer Monographs in Mathematics, Springer, Berlin, 2002.
A. I. Lichtman, On Lie algebras of free products of groups, Journal of Pure and Applied Algebra 18 (1980), 67–74.
J. Labute, Classification of Demushkin groups, Canadian Journal of Matheatics 19 (1966), 106–132.
J. Labute, On the descending central series of groups with a single defining relation, Journal of Algebra 14 (1970), 16–23.
J. Labute, Mild pro-p-groups and Galois groups of p-extensions of Q, Journal für die Reine und Angewandte Mathematik 596 (2006), 155–182.
J. Labute and J. Minác, Mild pro-2 groups and 2-extensions of Q with restricted ramification, Journal of Algebra 332 (2011), 136–158.
T. Y. Lam, Orderings, Valuations and Quadratic Forms, CBMS Regional Conference Series in Mathematics, Vol. 52, American Mathematical Society, Providence, RI, 1983.
M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Annales Scientifiques de l’École Normale Supérieure 71 (1954), 101–190.
J.-M. Lemaire, Algèbres connexes et homologie des espaces de lacets, Lecture Notes in Mathematics, Vol. 422, Springer-Verlag, Berlin, 1974.
J. Minác, Galois groups of some 2-extensions of ordered fields, La Société Royale d Canada. Le Académie des Sciences. Comtes Rendus Mathématiques 8 (1986), 103–108.
J. Minác and M. Spira, Formally real fields, Pythagorean fields, C-fields and Wgroups, Mathematische Zeitschrift 205 (1990), 519–530.
J. Minác and M. Spira, Witt rings and Galois groups, Annals of Mathematics 144 (1996), 35–60.
J. Minác and N. D. Tân, Triple Massey products and Galois theory, Journal of the European Mathematical Society, to appear.
J. Minác and N. D. Tân, The Kernel Unipotent Conjecture and Massey products on an odd rigid field, Advances in Mathematics 273 (2015), 242–270.
J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of Number Fields, second edition, Grundlehren der Mathematischen Wissenschaften, Vol. 323, Springer-Verlag, Berlin, 2008.
A. Polishchuk and L. Positselski, Quadratic Algebras, University Lecture Series, Vol. 37, American Mathematical Society, Providence, RI, 2005.
D. G. Quillen, On the associated graded ring of a group ring, Journal of Algebra 10 (1968), 411–418.
I. R. Shafarevich, On p-extensions, Matematicheskii Sbornik 20 (1947), 351–363.
J.-P. Serre, Structures de certains pro-p-groups, in Séminaire Bourbaki, Vol. 8, Société Mathématique de France, Paris, 1962–1964, exposé 252, pp. 145–155.
J.-P. Serre, Galois Cohomology, Springer Monographs in Mathematics, Springer, Berlin, 2002.
D. Vogel, On the Galois group of 2-extensions with restricted ramification, Journal für die Reine und Angewandte Mathematik 581 (2005), 117–150.
R. Ware, When are Witt rings group rings? II, Pacific Journal of Mathematics 76 (1978), 541–564.
H. Zassenhaus, Ein Verfahren, jeder endlichen p-Gruppe einen Lie-Ring mit der Characteristic p zuzuordnen, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 13 (1939), 200–207.
Author information
Authors and Affiliations
Corresponding authors
Additional information
JM is partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant R0370A01.
MR is partially supported by a CGS-D scholarship.
NDT is partially supported by the National Foundation for Science and Technology Development (NAFOSTED) grant 101.04-2014.34.
Rights and permissions
About this article
Cite this article
Mináč, J., Rogelstad, M. & Tân, N.D. Dimensions of Zassenhaus filtration subquotients of some pro-p-groups. Isr. J. Math. 212, 825–855 (2016). https://doi.org/10.1007/s11856-016-1310-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11856-016-1310-0