Advertisement

Israel Journal of Mathematics

, Volume 212, Issue 2, pp 825–855 | Cite as

Dimensions of Zassenhaus filtration subquotients of some pro-p-groups

  • Ján MináčEmail author
  • Michael Rogelstad
  • Nguyễn Duy TânEmail author
Article

Abstract

We compute the F p -dimension of an n-th graded piece G (n)/G(n+1) of the Zassenhaus filtration for various finitely generated pro-p-groups G. These groups include finitely generated free pro-p-groups, Demushkin pro-p-groups and their free pro-p products. We provide a unifying principle for deriving these dimensions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Be1]
    E. Becker, Euklidische Körper und euklidische Hüllen von Körpern, Journal für die Reine und Angewandte Mathematik 268/269 (1974), 41–52.zbMATHGoogle Scholar
  2. [Be2]
    E. Becker, Hereditarily-Pythagorean Fields and Orderings of Higher Level, Monografías de matemática, Vol. 29, Instituto de Matemática Pura e Aplicada, Rio de Janero, 1978.zbMATHGoogle Scholar
  3. [CEM]
    S. K. Chebolu, I. Efrat and J. Minác, Quotients of absolute Galois groups which determine the entire Galois cohomology, Mathematische Annalen 352 (2012), 205–221.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [De1]
    S. P. Demushkin, The group of the maximum p-extension of a local field, Izvestiya Akademii Nauk SSSR. Seriya Matematichesjaya 25 (1961), 329–346.Google Scholar
  5. [De2]
    S. P. Demushkin, On 2-extensions of a local field, Sibirskii Matematicheskii Zhurnal 4 (1963), 951–955.MathSciNetzbMATHGoogle Scholar
  6. [DDMS]
    J. D. Dixon, M. P. F. Du Sautoy, A. Mann and D. Segal, Analytic pro-p Groups, second edition, Cambridge Studies in Advanced Mathematics, Vol. 61, Cambridge University Press, Cambridge, 1999.CrossRefzbMATHGoogle Scholar
  7. [Ef1]
    I. Efrat, The Zassenhaus filtration, Massey products, and representations of profinite groups, Advances in Mathematics 263 (2014), 389–411.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Ef2]
    I. Efrat, Filtrations of free groups as intersections, Archiv der Mathematik 103 (2014), 411–420.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [EH]
    I. Efrat and D. Haran, On Galois groups over Pythagorean and semi-real closed fields, Israel Journal of Mathematics 85 (1994), 57–78.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [EM]
    I. Efrat and J. Minác, Galois groups and cohomological functors, Transactions of the American Mathematical Society, to appear. arXiv:1103.1508.Google Scholar
  11. [Er]
    M. Ershov, Kazhdan quotients of Golod-Shafarevich groups, Proceedings of the London Mathematical Society 102 (2011), 599–636.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Fo]
    P. Forré, Strongly free sequences and pro-p-groups of cohomological dimension 2, Journal für die Reine und Angewandte Mathematik 658 (2011), 173–192.MathSciNetzbMATHGoogle Scholar
  13. [Gä]
    J. Gärtner, Mild pro-p-groups with trivial cup product, PhD thesis, Universität Heidelberg, 2011.zbMATHGoogle Scholar
  14. [Ha]
    M. Hall, Jr., A basis for free Lie rings and higher commutators in free groups, Proceedings of the American Mathematical Society 1 (1950), 575–581.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [Har]
    D. Haran, Closed subgroups of G(Q) with involutions, Journal of Algebra 129 (1990), 393-411.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Hart]
    M. Hartl, On Fox and augmentation quotients of semidirect products, Journal of Algebra 324 (2010), 3276–3307.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Ko]
    H. Koch, Galois Theory of p-Extensions, Springer Monographs in Mathematics, Springer, Berlin, 2002.CrossRefzbMATHGoogle Scholar
  18. [Li]
    A. I. Lichtman, On Lie algebras of free products of groups, Journal of Pure and Applied Algebra 18 (1980), 67–74.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [La1]
    J. Labute, Classification of Demushkin groups, Canadian Journal of Matheatics 19 (1966), 106–132.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [La2]
    J. Labute, On the descending central series of groups with a single defining relation, Journal of Algebra 14 (1970), 16–23.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [La3]
    J. Labute, Mild pro-p-groups and Galois groups of p-extensions of Q, Journal für die Reine und Angewandte Mathematik 596 (2006), 155–182.MathSciNetzbMATHGoogle Scholar
  22. [LM]
    J. Labute and J. Minác, Mild pro-2 groups and 2-extensions of Q with restricted ramification, Journal of Algebra 332 (2011), 136–158.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [Lam]
    T. Y. Lam, Orderings, Valuations and Quadratic Forms, CBMS Regional Conference Series in Mathematics, Vol. 52, American Mathematical Society, Providence, RI, 1983.CrossRefzbMATHGoogle Scholar
  24. [Laz]
    M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Annales Scientifiques de l’École Normale Supérieure 71 (1954), 101–190.MathSciNetzbMATHGoogle Scholar
  25. [Le]
    J.-M. Lemaire, Algèbres connexes et homologie des espaces de lacets, Lecture Notes in Mathematics, Vol. 422, Springer-Verlag, Berlin, 1974.zbMATHGoogle Scholar
  26. [Mi]
    J. Minác, Galois groups of some 2-extensions of ordered fields, La Société Royale d Canada. Le Académie des Sciences. Comtes Rendus Mathématiques 8 (1986), 103–108.MathSciNetzbMATHGoogle Scholar
  27. [MS1]
    J. Minác and M. Spira, Formally real fields, Pythagorean fields, C-fields and Wgroups, Mathematische Zeitschrift 205 (1990), 519–530.zbMATHGoogle Scholar
  28. [MS2]
    J. Minác and M. Spira, Witt rings and Galois groups, Annals of Mathematics 144 (1996), 35–60.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [MT]
    J. Minác and N. D. Tân, Triple Massey products and Galois theory, Journal of the European Mathematical Society, to appear.Google Scholar
  30. [MTE]
    J. Minác and N. D. Tân, The Kernel Unipotent Conjecture and Massey products on an odd rigid field, Advances in Mathematics 273 (2015), 242–270.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [NSW]
    J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of Number Fields, second edition, Grundlehren der Mathematischen Wissenschaften, Vol. 323, Springer-Verlag, Berlin, 2008.CrossRefzbMATHGoogle Scholar
  32. [PP]
    A. Polishchuk and L. Positselski, Quadratic Algebras, University Lecture Series, Vol. 37, American Mathematical Society, Providence, RI, 2005.CrossRefzbMATHGoogle Scholar
  33. [Qu]
    D. G. Quillen, On the associated graded ring of a group ring, Journal of Algebra 10 (1968), 411–418.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [Sha]
    I. R. Shafarevich, On p-extensions, Matematicheskii Sbornik 20 (1947), 351–363.MathSciNetzbMATHGoogle Scholar
  35. [Se1]
    J.-P. Serre, Structures de certains pro-p-groups, in Séminaire Bourbaki, Vol. 8, Société Mathématique de France, Paris, 1962–1964, exposé 252, pp. 145–155.Google Scholar
  36. [Se2]
    J.-P. Serre, Galois Cohomology, Springer Monographs in Mathematics, Springer, Berlin, 2002.zbMATHGoogle Scholar
  37. [Vo]
    D. Vogel, On the Galois group of 2-extensions with restricted ramification, Journal für die Reine und Angewandte Mathematik 581 (2005), 117–150.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [Wa]
    R. Ware, When are Witt rings group rings? II, Pacific Journal of Mathematics 76 (1978), 541–564.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [Zas]
    H. Zassenhaus, Ein Verfahren, jeder endlichen p-Gruppe einen Lie-Ring mit der Characteristic p zuzuordnen, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 13 (1939), 200–207.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2016

Authors and Affiliations

  1. 1.Department of MathematicsWestern UniversityLondon, OntarioCanada
  2. 2.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations